Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea. 2011

Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
Department of Otolaryngology, Head and Neck Surgery, The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

In the developing mammalian cochlea, the sensory hair cells receive efferent innervation originating in the superior olivary complex. This input is mediated by α9/α10 nicotinic acetylcholine receptors (nAChRs) and is inhibitory due to the subsequent activation of calcium-dependent SK2 potassium channels. We examined the acquisition of this cholinergic efferent input using whole-cell voltage-clamp recordings from inner hair cells (IHCs) in acutely excised apical turns of the rat cochlea from embryonic day 21 to postnatal day 8 (P8). Responses to 1 mm acetylcholine (ACh) were detected from P0 on in almost every IHC. The ACh-activated current amplitude increased with age and demonstrated the same pharmacology as α9-containing nAChRs. Interestingly, at P0, the ACh response was not coupled to SK2 channels, so that the initial cholinergic response was excitatory and could trigger action potentials in IHCs. Coupling to SK current was detected earliest at P1 in a subset of IHCs and by P3 in every IHC studied. Clustered nAChRs and SK2 channels were found on IHCs from P1 on using Alexa Fluor 488 conjugated α-bungarotoxin and SK2 immunohistochemistry. The number of nAChRs clusters increased with age to 16 per IHC at P8. Cholinergic efferent synaptic currents first appeared in a subset of IHCs at P1 and by P3 in every IHC studied, contemporaneously with ACh-evoked SK currents, suggesting that SK2 channels may be necessary at onset of synaptic function. An analogous pattern of development was observed for the efferent synapses that form later (P6-P8) on outer hair cells in the basal cochlea.

UI MeSH Term Description Entries
D008297 Male Males
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
June 2000, Science (New York, N.Y.),
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
September 1996, The European journal of neuroscience,
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
October 1982, Proceedings of the Royal Society of London. Series B, Biological sciences,
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
June 2017, The Journal of physiology,
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
July 2005, The Journal of physiology,
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
July 2001, Molecular pharmacology,
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
December 2012, Neurobiology of aging,
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
November 2013, Open biology,
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
August 2006, Brain research,
Isabelle Roux, and Eric Wersinger, and J Michael McIntosh, and Paul A Fuchs, and Elisabeth Glowatzki
June 2018, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!