Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. 1990

A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
Department of Molecular Biophysics and Biochemistry, Yale University Medical School, New Haven, Connecticut 06510.

The Klenow fragment structure, together with many biochemical experiments, has suggested a region of the protein that may contain the polymerase active site. We have changed 7 amino acid residues within this region by site-directed mutagenesis, yielding 12 mutant proteins which have been purified and analyzed in vitro. The results of steady-state kinetic determinations of Km(dNTP) and kcat for the polymerase reaction, together with measurements of DNA binding affinity, suggest strongly that this study has succeeded in targeting important active site residues. Moreover, the in vitro data allow dissection of the proposed active site region into two clusters of residues that are spatially, as well as functionally, fairly distinct. Mutations in Tyr766, Arg841, and Asn845 cause an increase in Km(dNTP), suggesting that contacts with the incoming dNTP are made in this region. Mutations in the second cluster of residues, Gln849, Arg668, and Asp882, cause a large decrease in kcat, suggesting a role for these residues in catalysis of the polymerase reaction. The DNA-binding properties of mutations at positions 849 and 668 may indicate that the catalytic role of these side chains is associated with their interaction with the DNA substrate. Screening of the mutations in vivo for the classical polA-defective phenotype (sensitivity to DNA damage) demonstrated that a genetic screen of this type may be a reasonable predictor or kcat or of DNA binding affinity in future mutational studies.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
January 1995, Methods in enzymology,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
January 1988, Molekuliarnaia biologiia,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
May 2020, Cold Spring Harbor protocols,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
September 1986, Proteins,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
March 1998, Proceedings of the National Academy of Sciences of the United States of America,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
January 1993, Cold Spring Harbor symposia on quantitative biology,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
January 1991, Molekuliarnaia biologiia,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
October 1989, Bioorganicheskaia khimiia,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
January 1989, Molekuliarnaia biologiia,
A H Polesky, and T A Steitz, and N D Grindley, and C M Joyce
August 2000, The Journal of biological chemistry,
Copied contents to your clipboard!