Expression of bcr-abl fusion transcripts following bone marrow transplantation for Philadelphia chromosome-positive leukemia. 1990

S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
Department of Medicine, Stanford University School of Medicine, California.

A modified polymerase chain reaction (PCR) procedure was used to study the expression of bcr-abl fusion transcripts following allogeneic bone marrow transplantation (BMT) for Philadelphia chromosome (Ph1) positive acute and chronic leukemias. The technique was applied to RNA preparations of peripheral blood and bone marrow cells from 10 patients with chronic myelogenous leukemia (CML) and one patient with acute lymphoblastic leukemia (ALL), all of whom had undergone allogenic BMT and were in clinical and cytogenetic remission. Pre-BMT samples available for eight of 11 patients contained detectable bcr-abl fusion products serving as a baseline for comparison to post-BMT studies. Six patients showed no PCR-detectable bcr-abl transcripts in each of several serial analyses post-BMT (1-36 months post-BMT). The remaining five patients demonstrated various patterns of bcr-abl transcript expression after transplantation. In three patients, bcr-abl transcripts persisted for up to 3 months post-BMT but subsequently were undetectable. Molecular relapse was observed 3 and 6 months post-BMT in the remaining two patients whose earlier post-BMT samples showed no bcr-abl fusion transcripts. No bcr-abl transcripts were detected in subsequent samples from both of these patients 6 months and 1 year post-BMT, respectively. These data confirm that Ph1 carrying cells expressing the bcr-abl fusion mRNA may persist or recur for several months following BMT in the absence of clinical and cytogenetic relapse. The significance of these observations is discussed with respect to results reported recently by others using similar techniques.

UI MeSH Term Description Entries
D008297 Male Males
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D010677 Philadelphia Chromosome An aberrant form of human CHROMOSOME 22 characterized by translocation of the distal end of chromosome 9 from 9q34, to the long arm of chromosome 22 at 22q11. It is present in the bone marrow cells of 80 to 90 per cent of patients with chronic myelocytic leukemia (LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE). Ph1 Chromosome,Ph 1 Chromosome,1 Chromosomes, Ph,Chromosome, Ph 1,Chromosome, Ph1,Chromosome, Philadelphia,Chromosomes, Ph 1,Chromosomes, Ph1,Ph 1 Chromosomes,Ph1 Chromosomes
D012008 Recurrence The return of a sign, symptom, or disease after a remission. Recrudescence,Relapse,Recrudescences,Recurrences,Relapses
D005260 Female Females
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015464 Leukemia, Myelogenous, Chronic, BCR-ABL Positive Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS. Granulocytic Leukemia, Chronic,Leukemia, Granulocytic, Chronic,Leukemia, Myelocytic, Chronic,Leukemia, Myelogenous, Chronic,Leukemia, Myeloid, Chronic,Myelocytic Leukemia, Chronic,Myelogenous Leukemia, Chronic,Myeloid Leukemia, Chronic,Leukemia, Chronic Myelogenous,Leukemia, Chronic Myeloid,Leukemia, Myelogenous, Ph1 Positive,Leukemia, Myelogenous, Ph1-Positive,Leukemia, Myeloid, Ph1 Positive,Leukemia, Myeloid, Ph1-Positive,Leukemia, Myeloid, Philadelphia Positive,Leukemia, Myeloid, Philadelphia-Positive,Myelogenous Leukemia, Ph1-Positive,Myeloid Leukemia, Ph1-Positive,Myeloid Leukemia, Philadelphia-Positive,Chronic Granulocytic Leukemia,Chronic Granulocytic Leukemias,Chronic Myelocytic Leukemia,Chronic Myelocytic Leukemias,Chronic Myelogenous Leukemia,Chronic Myelogenous Leukemias,Chronic Myeloid Leukemia,Chronic Myeloid Leukemias,Granulocytic Leukemias, Chronic,Leukemia, Chronic Granulocytic,Leukemia, Chronic Myelocytic,Leukemia, Ph1-Positive Myelogenous,Leukemia, Ph1-Positive Myeloid,Leukemia, Philadelphia-Positive Myeloid,Leukemias, Chronic Granulocytic,Leukemias, Chronic Myelocytic,Leukemias, Chronic Myelogenous,Leukemias, Chronic Myeloid,Leukemias, Ph1-Positive Myelogenous,Leukemias, Ph1-Positive Myeloid,Leukemias, Philadelphia-Positive Myeloid,Myelocytic Leukemias, Chronic,Myelogenous Leukemia, Ph1 Positive,Myelogenous Leukemias, Chronic,Myelogenous Leukemias, Ph1-Positive,Myeloid Leukemia, Ph1 Positive,Myeloid Leukemia, Philadelphia Positive,Myeloid Leukemias, Chronic,Myeloid Leukemias, Ph1-Positive,Myeloid Leukemias, Philadelphia-Positive,Ph1-Positive Myelogenous Leukemia,Ph1-Positive Myelogenous Leukemias,Ph1-Positive Myeloid Leukemia,Ph1-Positive Myeloid Leukemias,Philadelphia-Positive Myeloid Leukemia,Philadelphia-Positive Myeloid Leukemias

Related Publications

S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
April 1997, Blood,
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
April 1995, PCR methods and applications,
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
August 2001, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi,
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
January 1990, Japanese journal of cancer research : Gann,
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
June 1992, Blood,
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
November 1995, Bone marrow transplantation,
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
March 1996, Bone marrow transplantation,
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
May 1993, Blood,
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
December 2002, Internal medicine (Tokyo, Japan),
S Kohler, and N Galili, and J L Sklar, and T A Donlon, and K G Blume, and M L Cleary
April 1988, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!