Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. 1990

J S Flick, and M Johnston
Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110.

Expression of the GAL1 gene in Saccharomyces cerevisiae is strongly repressed by growth on glucose. We show that two sites within the GAL1 promoter mediate glucose repression. First, glucose inhibits transcription activation by GAL4 protein through UASG. Second, a promoter element, termed URSG, confers glucose repression independently of GAL4. We have localized the URSG sequences responsible for glucose repression to an 87-base-pair fragment located between UASG and the TATA box. Promoters deleted for small (20-base-pair) segments that span this sequence are still subject to glucose repression, suggesting that there are multiple sequences within this region that confer repression. Extended deletions across this region confirm that it contains at least two and possibly three URSG elements. To identify the gene products that confer repression upon UASG and URSG, we have analyzed glucose repression mutants and found that the GAL83, REG1, GRR1, and SSN6 genes are required for repression mediated by both UASG and URSG. In contrast, GAL82 and HXK2 are required only for UASG repression. A mutation designated urr1-1 (URSG repression resistant) was identified that specifically relieves URSG repression without affecting UASG repression. In addition, we observed that the SNF1-encoded protein kinase is essential for derepression of both UASG and URSG. We propose that repression of UASG and URSG is mediated by two independent pathways that respond to a common signal generated by growth on glucose.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

J S Flick, and M Johnston
September 2015, FEMS yeast research,
J S Flick, and M Johnston
August 1984, Molecular and cellular biology,
J S Flick, and M Johnston
January 1992, Molecular microbiology,
J S Flick, and M Johnston
October 2000, Biotechnology and bioengineering,
J S Flick, and M Johnston
August 1998, Molecular & general genetics : MGG,
J S Flick, and M Johnston
November 1999, Antimicrobial agents and chemotherapy,
J S Flick, and M Johnston
January 2007, Biotechnology and bioengineering,
J S Flick, and M Johnston
March 2022, FEMS yeast research,
Copied contents to your clipboard!