Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine--a finite element based study. 2012

Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
Engineering Center for Orthopaedic Research Excellence (E-CORE), University of Toledo, Toledo, OH 43606, USA.

BACKGROUND Studies delineating the adjacent level effect of single level disc replacement systems have been reported in literature. The aim of this study was to compare the adjacent level biomechanics of bi-level disc replacement, bi-level fusion and a construct having adjoining level disc replacement and fusion system. METHODS In total, biomechanics of four models- intact, bi level disc replacement, bi level fusion and fusion plus disc replacement at adjoining levels- was studied to gain insight into the effects of various instrumentation systems on cranial and caudal adjacent levels using finite element analysis (73.6N+varying moment). RESULTS The bi-level fusion models are more than twice as stiff as compared to the intact model during flexion-extension, lateral bending and axial rotation. Bi-level disc replacement model required moments lower than intact model (1.5Nm). Fusion plus disc replacement model required moment 10-25% more than intact model, except in extension. Adjacent level motions, facet loads and endplate stresses increased substantially in the bi-level fusion model. On the other hand, adjacent level motions, facet loads and endplate stresses were similar to intact for the bi-level disc replacement model. For the fusion plus disc replacement model, adjacent level motions, facet loads and endplate stresses were closer to intact model rather than the bi-level fusion model, except in extension. CONCLUSIONS Based on our finite element analysis, fusion plus disc replacement procedure has less severe biomechanical effects on adjacent levels when compared to bi-level fusion procedure. Bi-level disc replacement procedure did not have any adverse mechanical effects on adjacent levels.

UI MeSH Term Description Entries
D007403 Intervertebral Disc Any of the 23 plates of fibrocartilage found between the bodies of adjacent VERTEBRAE. Disk, Intervertebral,Intervertebral Disk,Disc, Intervertebral,Discs, Intervertebral,Disks, Intervertebral,Intervertebral Discs,Intervertebral Disks
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002574 Cervical Vertebrae The first seven VERTEBRAE of the SPINAL COLUMN, which correspond to the VERTEBRAE of the NECK. Cervical Spine,Cervical Spines,Spine, Cervical,Vertebrae, Cervical
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013123 Spinal Fusion Operative immobilization or ankylosis of two or more vertebrae by fusion of the vertebral bodies with a short bone graft or often with diskectomy or laminectomy. (From Blauvelt & Nelson, A Manual of Orthopaedic Terminology, 5th ed, p236; Dorland, 28th ed) Spondylodesis,Spondylosyndesis,Fusion, Spinal,Fusions, Spinal,Spinal Fusions,Spondylodeses,Spondylosyndeses
D016059 Range of Motion, Articular The distance and direction to which a bone joint can be extended. Range of motion is a function of the condition of the joints, muscles, and connective tissues involved. Joint flexibility can be improved through appropriate MUSCLE STRETCHING EXERCISES. Passive Range of Motion,Joint Flexibility,Joint Range of Motion,Range of Motion,Flexibility, Joint
D055959 Intervertebral Disc Degeneration Degenerative changes in the INTERVERTEBRAL DISC due to aging or structural damage, especially to the vertebral end-plates. Degenerative Disc Disease,Degenerative Intervertebral Discs,Degenerative Intervertebral Disks,Intervertebral Disk Degeneration,Disc Degeneration,Disc Degradation,Disk Degeneration,Disk Degradation,Degeneration, Disc,Degeneration, Disk,Degeneration, Intervertebral Disc,Degeneration, Intervertebral Disk,Degenerative Disc Diseases,Degenerative Intervertebral Disc,Degenerative Intervertebral Disk,Degradation, Disc,Degradation, Disk,Disc Degeneration, Intervertebral,Disc Degenerations,Disc Degradations,Disc Disease, Degenerative,Disc, Degenerative Intervertebral,Disk Degeneration, Intervertebral,Disk Degenerations,Disk Degradations,Disk, Degenerative Intervertebral,Intervertebral Disc Degenerations,Intervertebral Disc, Degenerative,Intervertebral Disk Degenerations,Intervertebral Disk, Degenerative
D019245 Compressive Strength The maximum compression a material can withstand without failure. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p427) Compressive Strengths,Strength, Compressive,Strengths, Compressive

Related Publications

Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
December 2019, International journal of spine surgery,
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
August 2017, Asian spine journal,
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
January 2019, BMC musculoskeletal disorders,
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
January 2022, Journal of craniovertebral junction & spine,
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
June 2022, JOR spine,
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
January 2022, Bioengineering (Basel, Switzerland),
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
January 2006, Studies in health technology and informatics,
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
March 2009, Spine,
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
November 2011, Spine,
Ahmad Faizan, and Vijay K Goel, and Ashok Biyani, and Steven R Garfin, and Christopher M Bono
May 2016, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
Copied contents to your clipboard!