Determination of cooperative interaction between clusters in Clostridium pasteurianum 2 (4Fe-4S) ferredoxin. 1979

W V Sweeney, and B A McIntosh

The effect of reducing one 4Fe-4S cluster in Clostridium pasteurianum 2 (4Fe-4S) ferredoxin on the reduction potential of the unreduced cluster has been investigated. While such an effect is suggested by both the x-ray structure of Peptococcus aerogenes 2 (4F-4S) ferredoxin and the polypeptide conformational change on reduction present in clostridial-type 2 (4Fe-4S) ferredoxins, present studies indicate that cluster-cluster cooperative interaction is not strong enough to be of functional importance in these proteins.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010460 Peptococcus A genus of gram-positive, anaerobic, coccoid bacteria that is part of the normal flora of the mouth, upper respiratory tract, and large intestine in humans. Its organisms cause infections of soft tissues and bacteremias.
D003013 Clostridium A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005288 Ferredoxins Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Ferredoxin,Ferredoxin I,Ferredoxin II,Ferredoxin III
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

W V Sweeney, and B A McIntosh
April 1985, European journal of biochemistry,
W V Sweeney, and B A McIntosh
June 2001, Journal of inorganic biochemistry,
W V Sweeney, and B A McIntosh
August 1995, European journal of biochemistry,
W V Sweeney, and B A McIntosh
November 1981, Biochemical and biophysical research communications,
W V Sweeney, and B A McIntosh
March 1992, European journal of biochemistry,
W V Sweeney, and B A McIntosh
May 1992, Biochemical and biophysical research communications,
Copied contents to your clipboard!