Potassium currents in hippocampal pyramidal cells. 1990

J F Storm
Institute of Neurophysiology, Oslo 1, Norway.

The hippocampal pyramidal cells provide an example of how multiple potassium (K) currents co-exist and function in central mammalian neurones. The data come from CA1 and CA3 neurones in hippocampal slices, cell cultures and acutely dissociated cells from rats and guinea-pigs. Six voltage- or calcium(Ca)-dependent K currents have so far been described in CA1 pyramidal cells in slices. Four of them (IA, ID, IK, IM) are activated by depolarization alone; the two others (IC, IAHP) are activated by voltage-dependent influx of Ca ions (IC may be both Ca- and voltage-gated). In addition, a transient Ca-dependent K current (ICT) has been described in certain preparations, but it is not yet clear whether it is distinct from IC and IA. (1) IA activates fast (within 10 ms) and inactivates rapidly (time constant typically 15-50 ms) at potentials positive to -60 mV; it probably contributes to early spike-repolarization, it can delay the first spike for about 0.1 s, and may regulate repetitive firing. (2) ID activates within about 20 ms but inactivates slowly (seconds) below the spike threshold (-90 to -60 mV), causing a long delay (0.5-5 s) in the onset of firing. Due to its slow recovery from inactivation (seconds), separate depolarizing inputs can be "integrated". ID probably also participates in spike repolarization. (3) IK activates slowly (time constant, tau, 20-60 ms) in response to depolarizations positive to -40 mV and inactivates (tau about 5s) at -80 to -40 mV; it probably participates in spike repolarization. (4) IM activates slowly (tau about 50 ms) positive to -60 mV and does not inactivate; it tends to attenuate excitatory inputs, it reduces the firing rate during maintained depolarization (adaptation) and contributes to the medium after-hyperpolarization (mAHP); IM is suppressed by acetylcholine (via muscarinic receptors), but may be enhanced by somatostatin. (5) IC is activated by influx of Ca ions during the action potential and is thought to cause the final spike repolarization and the fast AHP (although ICT may be involved). Like IM, it also contributes to the medium AHP and early adaptation. It differs from IAHP by being sensitive to tetraethylammonium (TEA, 1 mM), but insensitive to noradrenaline and muscarine. Large-conductance (BK; about 200 pS) Ca-activated K channels, which may mediate IC, have been recorded. (6) IAHP is slowly activated by Ca-influx during action potentials, causing spike-frequency adaptation and the slow AHP. Thus, IAHP exerts a strong negative feedback control of discharge activity.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In
Copied contents to your clipboard!