Metabolic and cardiovascular effects of salbutamol in atopic subjects with and without asthma. 1979

J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel

An intravenous injection of 100 microgram salbutamol sulphate was administered to a group of atopic asthmatics and a group of atopic control subjects without asthma. There was no difference in the metabolic and cardiovascular reponses of the two groups.

UI MeSH Term Description Entries
D006969 Hypersensitivity, Immediate Hypersensitivity reactions which occur within minutes of exposure to challenging antigen due to the release of histamine which follows the antigen-antibody reaction and causes smooth muscle contraction and increased vascular permeability. Atopic Hypersensitivity,Hypersensitivity, Atopic,Hypersensitivity, Type I,IgE-Mediated Hypersensitivity,Type I Hypersensitivity,Atopic Hypersensitivities,Hypersensitivities, Atopic,Hypersensitivities, IgE-Mediated,Hypersensitivities, Immediate,Hypersensitivities, Type I,Hypersensitivity, IgE-Mediated,IgE Mediated Hypersensitivity,IgE-Mediated Hypersensitivities,Immediate Hypersensitivities,Immediate Hypersensitivity,Type I Hypersensitivities
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D008297 Male Males
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing

Related Publications

J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel
July 1984, The Journal of the Association of Physicians of India,
J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel
September 2010, The Journal of allergy and clinical immunology,
J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel
February 1975, British journal of pharmacology,
J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel
December 1990, Lancet (London, England),
J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel
August 1986, British journal of clinical pharmacology,
J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel
October 2009, Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego,
J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel
October 1977, Thorax,
J Kallenbach, and B I Joffe, and S Zwi, and H C Seftel
January 1975, Les Bronches,
Copied contents to your clipboard!