Ultrastructural characterization of rat neurons in primary culture. 2012

F Robert, and J-F Cloix, and T Hevor
Laboratoire de Neurobiologie, Université d'Orléans, BP 6759, Rue de Chartres, F-45067 Orléans CEDEX 2, France.

Few studies have addressed the ultrastructure and morphology of neurons in primary pure culture. We therefore use immunohistochemistry and electron microscopy to investigate the ultrastructure of cultured neurons during extended incubation in vitro. Rat cerebral cortex neurons were cultured in Neurobasal™ medium. Adherent cells developed as networks of single neurons or clusters depending on the plating density. Almost all surviving cells were neurons as demonstrated by neurofilament immunolabeling. The number of cultured neurons increased substantially to 14-21 days in vitro (DIV) and then plateaued and subsequently declined. From DIV 1-10 neurons extended large neurites, followed by the development of fine and dense neurites, and neurones survived until DIV 30-50. Notably, numerous mitochondria were observed along fibrous elements within neurites, suggestive of active intracellular trafficking. Electron microscopy also revealed that multiple types of synapses were formed between neurons. These ultrastructural results confirm previous reports of electrophysiological activity in cultured neurons. However many neurons contained distorted mitochondria and abnormal organelles including multilamellar vesicles and multivesicular myeloid bodies. The proportion of neurons containing abnormal organelles increased significantly in culture medium supplemented with antibiotics. On long-term culture neuronal death and apoptotic nuclei were observed. Despite the presence of abnormal organelles, the ultrastructure of cultured neurons was very similar to that of in vivo neurons; in vitro culture therefore provides a useful tool for studies on neuronal development, aging, and neurotransmission.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D046529 Microscopy, Electron, Transmission Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen. Electron Diffraction Microscopy,Electron Microscopy, Transmission,Microscopy, Electron Diffraction,Transmission Electron Microscopy,Diffraction Microscopy, Electron,Microscopy, Transmission Electron

Related Publications

F Robert, and J-F Cloix, and T Hevor
May 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F Robert, and J-F Cloix, and T Hevor
December 1995, Journal of neurochemistry,
F Robert, and J-F Cloix, and T Hevor
March 2023, Poultry science,
F Robert, and J-F Cloix, and T Hevor
January 2012, Methods in molecular biology (Clifton, N.J.),
F Robert, and J-F Cloix, and T Hevor
December 2012, In vitro cellular & developmental biology. Animal,
F Robert, and J-F Cloix, and T Hevor
January 1989, In vivo (Athens, Greece),
F Robert, and J-F Cloix, and T Hevor
April 1983, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
F Robert, and J-F Cloix, and T Hevor
October 1994, Biochemical and biophysical research communications,
F Robert, and J-F Cloix, and T Hevor
April 2001, Neuroscience research,
Copied contents to your clipboard!