The significance of biological heterogeneity. 1990

H Rubin
Department of Molecular and Cell Biology, University of California, Berkeley 94720.

Heterogeneity of expression for a variety of characteristics is found among malignant cells in the organism and in culture. Normal cells are relatively uniform when organized in a tissue, but become heterogeneous for many characteristics when they are dispersed and grown in monolayer culture. The heterogenizing effect of growth in culture indicates that the morphology and behavior of normal cells is ordered by their topological relations in tissues and other homeostatic influences of the organism. Weakening of these ordering relations may contribute to malignant transformation, as it usually does in rodent cell culture. Although phenotypic differences among cells of a given type may be transient, they can be perpetuated by protracted exposure to selective conditions. Examples are cited of selection which leads to an adapted state that is heritable for many cell generations after removal of the selective conditions. Such heritable adaptations are analogous to the Dauermodifikationen, or lingering changes, first described in ciliated protozoa and shown there to be under cytoplasmic control. The concept of progressive state selection is introduced to account for heritable adaptation at the cellular level. It depends on the spontaneous occurrence of transient, variant states and their successive selection to progressively higher levels of adaptation to an altered microenvironment. Although the process is basically epigenetic, it may be stabilized by genetic change. The concept is consistent with our present knowledge of tumor development, including progression to metastasis, and with epigenetic aspects of normal development.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011387 Prokaryotic Cells Cells lacking a nuclear membrane so that the nuclear material is either scattered in the cytoplasm or collected in a nucleoid region. Cell, Prokaryotic,Cells, Prokaryotic,Prokaryotic Cell
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic

Related Publications

H Rubin
June 1977, Federation proceedings,
H Rubin
November 2013, Biochemistry. Biokhimiia,
H Rubin
December 1998, International journal of hematology,
H Rubin
January 2019, Advances in experimental medicine and biology,
H Rubin
July 1981, Nihon Jinzo Gakkai shi,
H Rubin
January 2015, Clinical and translational medicine,
H Rubin
January 1978, Polskie Archiwum Medycyny Wewnetrznej,
H Rubin
January 1992, Voprosy onkologii,
Copied contents to your clipboard!