The development of handedness in left/right asymmetry. 1990

N A Brown, and L Wolpert
MRC Experimental Embryology and Teratology Unit, St George's Hospital Medical School, London, UK.

The development of handed asymmetry requires a special mechanism for consistently specifying a difference between left and right sides. This is to be distinguished from both random asymmetry, and from those left/right differences that are mirror symmetrical. We propose a model for the development of handedness in bilateral animals, comprising three components. (i) A process termed conversion, in which a molecular handedness is converted into handedness at the cellular level. A specific model for this process is put forward, based on cell polarity and transport of cellular constituents by a handed molecule. (ii) A mechanism for random generation of asymmetry, which could involve a reaction-diffusion process, so that the concentration of a molecule is higher on one side than the other. The handedness generated by conversion could consistently bias this mechanism to one side. (iii) A tissue-specific interpretation process which responds to the difference between the two sides, and results in the development of different structures on the left and right. There could be direct genetic control of the direction of handedness in this model, most probably through the conversion process. Experimental evidence for the model is considered, particularly the iv mutation in the mouse, which appears to result in loss-of-function in biasing, and so asymmetry is random. The model can explain the abnormal development of handedness observed in bisected embryos of some mammalian, amphibian and sub-vertebrate species. Spiral asymmetry, as seen in spiral cleavage and in ciliates, involves only conversion of molecular asymmetry to the cellular and multicellular level, with no separate interpretation step.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N A Brown, and L Wolpert
December 2017, Lakartidningen,
N A Brown, and L Wolpert
January 2007, Advances in anatomy, embryology, and cell biology,
N A Brown, and L Wolpert
January 1997, Annual review of cell and developmental biology,
N A Brown, and L Wolpert
January 1992, AJNR. American journal of neuroradiology,
N A Brown, and L Wolpert
February 1886, The American journal of dental science,
N A Brown, and L Wolpert
June 2001, Development, growth & differentiation,
N A Brown, and L Wolpert
March 2014, Surgical and radiologic anatomy : SRA,
N A Brown, and L Wolpert
November 2018, Development (Cambridge, England),
Copied contents to your clipboard!