Optimization of endothelial cell growth in a murine in vitro blood-brain barrier model. 2012

Diane M Wuest, and Kelvin H Lee
Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.

In vitro cell culture models of the blood-brain barrier (BBB) are important tools used to study cellular physiology and brain disease therapeutics. Although the number of model configurations is expanding across neuroscience laboratories, it is not clear that any have been effectively optimized. A sequential screening study to identify optimal primary mouse endothelial cell parameter set points, grown alone and in combination with common model enhancements, including co-culturing with primary mouse or rat astrocytes and addition of biochemical agents in the media, was performed. A range of endothelial cell-seeding densities (1-8 × 10(5) cells/cm(2) ) and astrocyte-seeding densities (2-8 × 10(4) cells/cm(2) ) were studied over seven days in the system, and three distinct media-feeding strategies were compared to optimize biochemical agent exposure time. Implementation of all optimal set points increased transendothelial electrical resistance by over 200% compared to an initial model and established a suitable in vitro model for brain disease application studies. These results demonstrate the importance of optimizing cell culture growth, which is the most important parameter in creating an in vitro BBB model as it directly relates the model to the in vivo arrangement.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D017097 Electric Impedance The resistance to the flow of either alternating or direct electrical current. Bioelectrical Impedance,Electric Resistance,Impedance,Ohmic Resistance,Biolectric Impedance,Electrical Impedance,Electrical Resistance,Impedance, Bioelectrical,Impedance, Biolectric,Impedance, Electric,Impedance, Electrical,Ohmic Resistances,Resistance, Electric,Resistance, Electrical,Resistance, Ohmic,Resistances, Ohmic
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Diane M Wuest, and Kelvin H Lee
August 2012, Journal of visualized experiments : JoVE,
Diane M Wuest, and Kelvin H Lee
January 1988, Annals of the New York Academy of Sciences,
Diane M Wuest, and Kelvin H Lee
January 2011, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences,
Diane M Wuest, and Kelvin H Lee
January 2014, Methods in molecular biology (Clifton, N.J.),
Diane M Wuest, and Kelvin H Lee
May 2000, Neuroreport,
Diane M Wuest, and Kelvin H Lee
July 2014, Journal of neuroscience methods,
Diane M Wuest, and Kelvin H Lee
December 2016, Journal of visualized experiments : JoVE,
Copied contents to your clipboard!