Effect of nucleotides, actin and temperature on thermolysin digestion of myosin subfragment-1. 1990

A Muhlrad, and N Chaussepied
Cardiovascular Research Institute, University of California, San Francisco.

Myosin subfragment-1 from rabbit skeletal muscle was digested by thermolysin at 25 degrees, 12 degrees and 0 degree C. Thermolysin cleaves subfragment-1 heavy chain into two stable fragments, 28 kDa and 70 kDa, aligned in this order from the N-terminus [Applegate, D. & Reisler, E. (1983) Proc. Natl Acad. Sci. USA 80, 7109-7112]. The rate of digestion at 25 degrees C was significantly increased in the presence of MgATP and somewhat less in the presence of MgADP, or magnesium pyrophosphate. This activating effect of the nucleotides was decreased at 12 degrees C and completely eliminated at 0 degrees C. The results can be explained by assuming that there are two subfragment-1 conformers [Shriver, J. W. & Sykes, B. D. (1981) Biochemistry 20, 2004-2012], and that both the addition of ATP or its analogs, and lowering the temperature, shift the conformational equilibrium in the direction that is more susceptible to thermolysin. Actin inhibited thermolysin digestion of subfragment-1 at all three temperatures studied. Actin inhibition can be explained either by shifting the equilibrium of the conformers in the direction of the less susceptible form or by direct interference of actin with the binding of thermolysin to subfragment-1. Actin inhibition of thermolysin digestion also prevailed when subfragment-1 was in a ternary complex with nucleotide and actin, in both the strongly and weakly attached states. Similarly, actin inhibited the digestion of subfragment-1 modified by 4-phenylenedimaleimide [corrected], which also forms a weakly attached complex with actin. No difference could be found in the accessibility of the thermolysin-susceptible site of subfragment-1 at the 28-70 kDa junction in either rigor, strongly or weakly attached states, which indicates the similarity of the structure proximal to this specific site in the three attached states.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013820 Thermolysin A thermostable extracellular metalloendopeptidase containing four calcium ions. (Enzyme Nomenclature, 1992) 3.4.24.27. Thermolysin S
D015879 Myosin Subfragments Parts of the myosin molecule resulting from cleavage by proteolytic enzymes (PAPAIN; TRYPSIN; or CHYMOTRYPSIN) at well-localized regions. Study of these isolated fragments helps to delineate the functional roles of different parts of myosin. Two of the most common subfragments are myosin S-1 and myosin S-2. S-1 contains the heads of the heavy chains plus the light chains and S-2 contains part of the double-stranded, alpha-helical, heavy chain tail (myosin rod). Actomyosin Subfragments,Meromyosin Subfragments,Myosin Rod,Myosin S-1,Myosin S-2,ATPase, Actin-S1,Actin S1 ATPase,Actoheavy Meromyosin,Actomyosin Subfragment 1 ATPase,H-Meromyosin,Heavy Meromyosin,Heavy Meromyosin Subfragment-1,Heavy Meromyosin Subfragment-2,Light Meromyosin,Myosin Subfragment-1,Myosin Subfragment-2,ATPase, Actin S1,Actin-S1 ATPase,H Meromyosin,Heavy Meromyosin Subfragment 1,Heavy Meromyosin Subfragment 2,Meromyosin Subfragment-1, Heavy,Meromyosin Subfragment-2, Heavy,Meromyosin, Actoheavy,Meromyosin, Heavy,Meromyosin, Light,Myosin S 1,Myosin S 2,Myosin Subfragment 1,Myosin Subfragment 2,Subfragment-1, Heavy Meromyosin,Subfragment-1, Myosin,Subfragment-2, Heavy Meromyosin,Subfragment-2, Myosin,Subfragments, Actomyosin,Subfragments, Meromyosin,Subfragments, Myosin

Related Publications

A Muhlrad, and N Chaussepied
May 1984, Journal of biochemistry,
A Muhlrad, and N Chaussepied
November 1986, Biochemistry,
A Muhlrad, and N Chaussepied
December 1984, European journal of biochemistry,
A Muhlrad, and N Chaussepied
December 1992, European journal of biochemistry,
A Muhlrad, and N Chaussepied
March 1995, The Journal of biological chemistry,
A Muhlrad, and N Chaussepied
September 1985, Biochemistry,
A Muhlrad, and N Chaussepied
April 1977, Archives of biochemistry and biophysics,
Copied contents to your clipboard!