Expression of argininosuccinate lyase mRNA in foetal hepatocytes. Regulation by glucocorticoids and insulin. 1990

A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
Laboratoire d'Endocrinologie, Unité de Recherche Associée 650, Centre National de la Recherche Scientifique, Faculté des Sciences et Techniques, Mont-Saint-Aignan, France.

Argininosuccinate lyase (ASL), the fourth enzyme of the urea cycle, belongs to a group of liver enzymes appearing in the late foetal period in the rat. Several hormones, including glucocorticosteroids and insulin have been implicated in the control of the development of this enzyme activity. In this study, the cloned cDNA was used to measure the relative abundance of ASL mRNA in the livers of rats at various stages of perinatal development and in cultured foetal hepatocytes during hormonal manipulations. The ASL mRNA was first detectable on day 15.5 of gestation and increased in amount concomitantly with the rise in the enzyme activity, suggesting that the appearance of enzyme activity reflects the turning on of specific gene transcription. When foetal hepatocytes were exposed to dexamethasone, an increase in ASL mRNA was detected, which was completely abolished by addition of actinomycin D, suggesting a transcriptional effect of the steroid. In contrast, administration of cortisol to foetuses in utero had no effect on the mRNA level, suggesting that the steroid action is inhibited in the intra-uterine environment. Insulin might be the inhibiting factor since it completely repressed the dexamethasone-induced accumulation of ASL mRNA in foetal hepatocytes. These data were confirmed in vivo by experiments using streptozotocin, which produces insulin-depleted foetuses and causes the accumulation of ASL mRNA. This regulation of ASL mRNA by glucocorticoids and insulin could account for the modulation of the enzyme activity observed in vivo and in vitro.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001123 Argininosuccinate Lyase An enzyme of the urea cycle which splits argininosuccinate to fumarate plus arginine. Its absence leads to the metabolic disease ARGININOSUCCINIC ACIDURIA in man. EC 4.3.2.1. Argininosuccinase,Lyase, Argininosuccinate

Related Publications

A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
June 1987, Diabetes,
A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
December 2005, Regulatory peptides,
A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
November 1984, European journal of biochemistry,
A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
April 1999, The Journal of nutrition,
A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
November 2000, Journal of hepatology,
A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
January 1992, The European journal of neuroscience,
A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
March 1996, The Journal of biological chemistry,
A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
May 1995, Journal of biochemistry,
A Husson, and S Renouf, and A Fairand, and C Buquet, and M Benamar, and R Vaillant
January 1988, Clinical and experimental hypertension. Part A, Theory and practice,
Copied contents to your clipboard!