The effects of lipid phase transitions on the interaction of mitochondrial NADH--ubiquinone oxidoreductase with ubiquinol--cytochrome c oxidoreductase. 1979

C Heron, and M G Gore, and C I Ragan

1. The endogenous phosphatidylcholine and phosphatidylethanolamine of Complexes I and III from bovine heart mitochondria may be completely replaced with 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine with at least partial retention of activity. 2. The lipid-replaced enzymes associate in 1:1 molar ratio to give a Complex I--III unit catalysing NADH-cytochrome c oxidoreductase activity. 3. On increasing the concentration of ubiquinone-10 and the synthetic phospholipid, the lipid-replaced Complexes appear to operate independently of each other as in the natural membrane. Thus the lipid-replaced enzymes associate in exactly the same ways as the enzymes containing natural phospholipids. 4. Arrhenius plots of NADH--cytochrome c oxidoreductase activity reconstituted from lipid-replaced Complexes I and III exhibit changes in slope at 24 degrees C. When the concentrations of phospholipid and ubiquinone-10 are increased, the Arrhenius plots show discontinuities at 24 degrees C as well as changes in slope. 5. The kinetics of cytochrome b reduction by NADH were measured in mixtures containing 2 mol of Complex III/mol of Complex I. When the enzymes contained natural phospholipids. the reduction kinetics were biphasic. When the enzymes had been supplemented with further phospholipid and ubiquinone-10 the kinetics were monophasic. When lipid-replaced enzymes were supplemented with 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine and ubiquinone-10, reduction of cytochrome b was monophasic above the phase-transition temperature of the lipid but biphasic below it. 6. These findings are interpreted in terms of the model for the interaction of Complexes in the natural membrane proposed by Heron, Ragan & Trum-power [(1978) Biochem. J. 174, 791--800].

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009226 Myristates Salts and esters of the 14-carbon saturated monocarboxylic acid--myristic acid. Tetradecanoates
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011808 Quinone Reductases NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol. Menaquinone Reductases,Reductases, Menaquinone,Reductases, Quinone
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.

Related Publications

C Heron, and M G Gore, and C I Ragan
September 1982, The Journal of biological chemistry,
C Heron, and M G Gore, and C I Ragan
February 1987, Biochemical Society transactions,
C Heron, and M G Gore, and C I Ragan
June 1993, Journal of bioenergetics and biomembranes,
C Heron, and M G Gore, and C I Ragan
March 1993, Biochimica et biophysica acta,
C Heron, and M G Gore, and C I Ragan
April 2002, Nihon rinsho. Japanese journal of clinical medicine,
C Heron, and M G Gore, and C I Ragan
January 2008, Biochimica et biophysica acta,
Copied contents to your clipboard!