Two amino acids in each of D1 and D2 dopamine receptor cytoplasmic regions are involved in D1-D2 heteromer formation. 2012

Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada. brian.odowd@utoronto.ca

D(1) and D(2) dopamine receptors exist as heteromers in cells and brain tissue and are dynamically regulated and separated by agonist concentrations at the cell surface. We determined that these receptor pairs interact primarily through discrete amino acids in the cytoplasmic regions of each receptor, with no evidence of any D(1)-D(2) receptor transmembrane interaction found. Specifically involved in heteromer formation we identified, in intracellular loop 3 of the D(2) receptor, two adjacent arginine residues. Substitution of one of the arginine pair prevented heteromer formation. Also involved in heteromer formation we identified, in the carboxyl tail of the D(1) receptor, two adjacent glutamic acid residues. Substitution of one of the glutamic acid pair prevented heteromer formation. These amino acid pairs in D(1) and D(2) receptors are oppositely charged, and presumably interact directly by electrostatic interactions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D055503 Protein Multimerization The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D019943 Amino Acid Substitution The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties. Amino Acid Substitutions,Substitution, Amino Acid,Substitutions, Amino Acid

Related Publications

Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
January 2015, Neuroscience,
Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
September 2022, Diabetes,
Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
December 2015, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
June 2011, Molecular brain,
Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
December 2012, Neuroscience,
Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
September 2020, Neurobiology of disease,
Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
December 2009, Proceedings of the National Academy of Sciences of the United States of America,
Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
December 2020, Neurochemical research,
Brian F O'Dowd, and Xiaodong Ji, and Tuan Nguyen, and Susan R George
June 1991, The Japanese journal of psychiatry and neurology,
Copied contents to your clipboard!