Stimulation by polyamines of carbamylphosphate:glucose phosphotransferase and glucose-6-phosphate phosphohydrolase activities of multifunctional glucose-6-phosphatase. 1979

R C Nordlie, and W T Johnson, and W E Cornatzer, and G W Twedell

The effects of added polyamines on carbamylphosphate (carbamyl-P):glucose phosphotransferase and glucose-6-phosphate (Glc-6-P) phosphohydrolase activities of rat hepatic D-Glc-6-P phosphohydrolase (EC 3.1.3.9) of intact and detergent-treated microsomes have been investigated. With the former preparation, in the presence of 1.4 mM phosphate substrate and 90 mM D-glucose (phosphotransferase), 1 mM spermine, spermidine, and putrescine activated Glc-6-P phosphohydrolase 67%, 57%, and 35%, respectively. Carbamyl-P:glucose phosphotransferase, under comparable conditions, was activated 57%, 34%, and 18%. NH+4 (0.25--5.0 mM) produced at best but a minor activation (0--14%), while poly(L-lysine) (Mr = 3400; degree of polymerization 16) equimolar relative to other polyamines with respect to ionized free amino groups activated the hydrolase 358% and the transferase 222%. Treatment of microsomes with the detergent deoxycholate reduced, but did not abolish, polyamine-induced activation. The stimulatory effects of polyamines persisted in the presence of excess catalase, indicating their independence from H2O2 formation; and were eliminated in the presence of Ca2+. Kinetic analysis revealed that all tested polyamines decreased the apparent Michaelis constant values for carbamyl-P and Glc-6-P, but had no effect on the Km for glucose. Poly(L-lysine) increased the V value for both Glc-6-P phosphohydrolase and apparent V values for phosphotransferase extrapolated to infinite concentrations of either carbamyl-P or glucose. The other tested polyamines elevated only this last velocity parameter. It is proposed that a major mechanism by which polyamines activate glucose-6-phosphatase-phosphotransferase is through their electrostatic interactions with phospholipids of the membrane of the endoplasmic reticulum of which this enzyme is a part. Conformational alterations thus induced may in turn affect catalytic behavior. It is suggested that polyamines, or similar positively charged peptides, might participate in the cellular regulation of synthetic and hydrolytic activities of glucose-6-phosphatase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D011107 Polylysine A peptide which is a homopolymer of lysine. Epsilon-Polylysine,Poly-(Alpha-L-Lysine),Epsilon Polylysine
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D002219 Carbamates Derivatives of carbamic acid, H2NC( Carbamate,Aminoformic Acids,Carbamic Acids,Acids, Aminoformic,Acids, Carbamic
D002221 Carbamyl Phosphate The monoanhydride of carbamic acid with PHOSPHORIC ACID. It is an important intermediate metabolite and is synthesized enzymatically by CARBAMYL-PHOSPHATE SYNTHASE (AMMONIA) and CARBAMOYL-PHOSPHATE SYNTHASE (GLUTAMINE-HYDROLYZING). Carbamoyl Phosphate,Dilithium Carbamyl Phosphate,Carbamyl Phosphate, Dilithium,Phosphate, Carbamoyl,Phosphate, Carbamyl,Phosphate, Dilithium Carbamyl
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase

Related Publications

R C Nordlie, and W T Johnson, and W E Cornatzer, and G W Twedell
September 1968, Biochemistry,
R C Nordlie, and W T Johnson, and W E Cornatzer, and G W Twedell
March 1974, Biochimica et biophysica acta,
R C Nordlie, and W T Johnson, and W E Cornatzer, and G W Twedell
January 1975, Biochimica et biophysica acta,
R C Nordlie, and W T Johnson, and W E Cornatzer, and G W Twedell
January 1969, Biochimica et biophysica acta,
R C Nordlie, and W T Johnson, and W E Cornatzer, and G W Twedell
April 1966, The Journal of biological chemistry,
R C Nordlie, and W T Johnson, and W E Cornatzer, and G W Twedell
September 1967, The Journal of biological chemistry,
Copied contents to your clipboard!