Substance P: depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. 1979

T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka

The substance P content, glutamic acid decarboxylase and choline acetyltransferase activities and the level of [3H]diprenorphine binding were measured in various regions of the lumbar spinal cord of rats after unilateral section of the sciatic nerve or after dorsal rhizotomy. Sciatic nerve section produced a 75--80% depletion of substance P in the dorsal horn but did not change the substance P content of the ventral horn. The onset of substance P depletion occurred within 7 days and was maintained for 2 months. The substance P content of the dorsal root ganglia and both the peripheral and central branches of primary sensory neurons was also reduced after sciatic nerve section. Glutamic acid decarboxylase and choline acetyltransferase activity were unchanged; however, a small decrease in opiate receptor binding occurred 1 month after nerve section. Dorsal rhizotomy produced an 80% depletion of substance P in the dorsal horn. In addition, the substance P content of the ventral horn was significantly reduced. Glutamic acid decarboxylase activity in the dorsal horn was unaffected by dorsal rhizotomy whereas opiate receptor binding was reduced by 40%. From these studies it appears that peripheral nerve injury results in the degeneration of primary sensory neurons which contain and release substance P as neurotransmitter.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D004174 Diprenorphine A narcotic antagonist similar in action to NALOXONE. It is used to remobilize animals after ETORPHINE neuroleptanalgesia and is considered a specific antagonist to etorphine. Diprenorphine Hydrochloride,Revivon,Hydrochloride, Diprenorphine
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent

Related Publications

T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
February 1981, Brain research,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
July 1993, Regulatory peptides,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
March 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
January 1988, Peptides,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
January 2017, Molecular pain,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
July 2001, Brain research bulletin,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
September 1994, Brain research,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
January 1984, The Journal of physiology,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
August 2002, Neuropeptides,
T Jessell, and A Tsunoo, and I Kanazawa, and M Otsuka
December 2006, Neuroscience letters,
Copied contents to your clipboard!