Cortisol and adrenocorticotropic hormone dynamics in the acute phase of subarachnoid haemorrhage. 2011
OBJECTIVE An adequate response of hypothalamic-pituitary-adrenal (HPA) axis is important for survival and recovery after a severe disease. The hypothalamus and the pituitary glands are at risk of damage after subarachnoid haemorrhage (SAH). A better understanding of the hormonal changes would be valuable for optimising care in the acute phase of SAH. METHODS Fifty-five patients with spontaneous SAH were evaluated regarding morning concentrations of serum (S)-cortisol and P-adrenocorticotropic hormone (ACTH) 7 days after the bleeding. In a subgroup of 20 patients, the diurnal changes of S-cortisol and P-ACTH were studied and urine (U)-cortisol was measured. The relationships of hormone concentrations to clinical and radiological parameters and to outcome were assessed. RESULTS S-cortisol and P-ACTH were elevated the day of SAH. S-cortisol concentrations below reference range were uncommon. Early global cerebral oedema was associated with higher S-cortisol concentrations at admission and a worse World Federation of Neurological Surgeons (WFNS) and Reaction Level Scale 85 grade. Global cerebral oedema was shown to be a predictor of S-cortisol at admittance. Patients in better WFNS grade displayed higher U-cortisol. All patients showed diurnal variations of S-cortisol and P-ACTH. A reversed diurnal variation of S-cortisol was more frequently found in mechanically ventilated patients. Periods of suppressed P-ACTH associated with S-cortisol peaks occurred especially in periods of secondary brain ischaemia. CONCLUSIONS There was an HPA response acutely after SAH with an increase in P-ACTH and S-cortisol. Higher U-cortisol in patients in a better clinical grade may indicate a more robust response of the HPA system. Global cerebral oedema was associated with higher S-cortisol at admission and was a predictor of S-cortisol concentrations. Global cerebral oedema may be the result of the stress response initiated by the brain injury. Periods of suppressed P-ACTH occurred particularly in periods of brain ischaemia, indicating a possible connection between brain ischaemia and ACTH suppression.