Conversion of 5-S-methyl-5-thio-D-ribose to methionine in Klebsiella pneumoniae. Stable isotope incorporation studies of the terminal enzymatic reactions in the pathway. 1990

R W Myers, and R H Abeles
Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254.

Extracts of Klebsiella pneumoniae convert 5-S-methyl-5-thio-D-ribose (methylthioribose) to methionine and formate. To probe the terminal steps of this biotransformation, [1-13C]methylthioribose has been synthesized and its metabolism examined. When supplemented with Mg2+, ATP, L-glutamine, and dioxygen, cell-free extracts of K. pneumoniae converted 50% of the [1-13C]methylthioribose to [13C]formate. The formation of [13C]formate was established by 13C and 1H NMR spectroscopy studies of the purified formate, and by 13C and 1H NMR spectroscopy and mass spectrometry studies of its p-phenylphenacyl derivative. By contrast, no incorporation of label from [1-13C]methylthioribose into the biosynthesized methionine was detected by either mass spectrometry or 13C and 1H NMR spectroscopy. The most reasonable interpretation of these results is that C-1 of methylthioribose is converted directly to formate concomitant with the conversion of carbon atoms 2-5 to methionine. The penultimate step in the conversion of methylthioribose to methionine and formate is an oxidative carbon-carbon bond cleavage reaction in which an equivalent of dioxygen is consumed. To investigate the fate of the dioxygen utilized in this reaction, the metabolism of [1-13C]methylthioribose in the presence of 18O2 was also examined. Mass spectrometry revealed the biosynthesis of substantial amounts of both [18O1]methionine and [13C, 18O1]formate under these conditions. These results suggest that the oxidative transformation in the conversion of methylthioribose to methionine and formate may be catalyzed by a novel intramolecular dioxygenase. A mechanism for this dioxygenase is proposed.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007711 Klebsiella pneumoniae Gram-negative, non-motile, capsulated, gas-producing rods found widely in nature and associated with urinary and respiratory infections in humans. Bacillus pneumoniae,Bacterium pneumoniae crouposae,Hyalococcus pneumoniae,Klebsiella pneumoniae aerogenes,Klebsiella rhinoscleromatis
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010103 Oxygen Isotopes Stable oxygen atoms that have the same atomic number as the element oxygen, but differ in atomic weight. O-17 and 18 are stable oxygen isotopes. Oxygen Isotope,Isotope, Oxygen,Isotopes, Oxygen
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D013865 Thioglycosides

Related Publications

R W Myers, and R H Abeles
July 1988, The Journal of biological chemistry,
R W Myers, and R H Abeles
August 1966, Biochemical and biophysical research communications,
R W Myers, and R H Abeles
November 1951, The Journal of biological chemistry,
R W Myers, and R H Abeles
May 1958, The Journal of clinical investigation,
Copied contents to your clipboard!