Mitochondrial electron transport chain complex III is required for antimycin A to inhibit autophagy. 2011

Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-ling Road, Shanghai 200032, China.

Autophagy is a cellular lysosome-dependent catabolic mechanism mediating the turnover of intracellular organelles and long-lived proteins. We show that antimycin A, a known inhibitor of mETC complex III, can inhibit autophagy. A structural and functional study shows that four close analogs of antimycin A that have no effect on mitochondria inhibition also do not inhibit autophagy, whereas myxothiazol, another mETC complex III inhibitor with unrelated structure to antimycin A, inhibits autophagy. Additionally, antimycin A and myxothiazol cannot inhibit autophagy in mtDNA-depleted H4 and mtDNA-depleted HeLa cells. These data suggest that antimycin A inhibits autophagy through its inhibitory activity on mETC complex III. Our data suggest that mETC complex III may have a role in mediating autophagy induction.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D000968 Antimycin A An antibiotic substance produced by Streptomyces species. It inhibits mitochondrial respiration and may deplete cellular levels of ATP. Antimycin A1 has been used as a fungicide, insecticide, and miticide. (From Merck Index, 12th ed) Butanoic acid, 2(or 3)-methyl-, 3-((3-(formylamino)-2-hydroxybenzoyl)amino)-8-hexyl-2,6-dimethyl-4,9-dioxo-1,5-dioxonan-7-yl ester,Antimycin A1
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D014450 Electron Transport Complex III A multisubunit enzyme complex that contains CYTOCHROME B GROUP; CYTOCHROME C1; and iron-sulfur centers. It catalyzes the oxidation of ubiquinol to UBIQUINONE, and transfers the electrons to CYTOCHROME C. In MITOCHONDRIA the redox reaction is coupled to the transport of PROTONS across the inner mitochondrial membrane. Complex III,Cytochrome bc1 Complex,Ubiquinol-Cytochrome-c Reductase,Coenzyme Q-Cytochrome-c Reductase,Coenzyme QH2-Cytochrome-c Reductase,Core I Protein, UCCreductase,Core I Protein, Ubiquinol-Cytochrome c Reductase,Core II Protein, UCCreductase,Core II Protein, Ubiquinol-Cytochrome c Reductase,Cytochrome b-c2 Oxidoreductase,Cytochrome bc1,Dihydroubiquinone-Cytochrome-c Reductase,QH(2)-Cytochrome-c Reductase,QH(2)-Ferricytochrome-c Oxidoreductase,Ubihydroquinone-Cytochrome-c Reductase,Ubiquinol-Cytochrome c Reductase,Ubiquinone-Cytochrome b-c2 Oxidoreductase,Coenzyme Q Cytochrome c Reductase,Coenzyme QH2 Cytochrome c Reductase,Core I Protein, Ubiquinol Cytochrome c Reductase,Core II Protein, Ubiquinol Cytochrome c Reductase,Cytochrome b c2 Oxidoreductase,Dihydroubiquinone Cytochrome c Reductase,Reductase, Ubiquinol-Cytochrome c,Ubihydroquinone Cytochrome c Reductase,Ubiquinol Cytochrome c Reductase,Ubiquinone Cytochrome b c2 Oxidoreductase
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
August 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
August 2018, Cell reports,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
November 2004, Anesthesia and analgesia,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
January 1969, Biochimica et biophysica acta,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
May 1993, Annals of neurology,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
February 1994, Annals of neurology,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
January 2015, PloS one,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
April 2021, Chemical science,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
May 2022, Nature immunology,
Xiuquan Ma, and Mingzhi Jin, and Yu Cai, and Hongguang Xia, and Kai Long, and Junli Liu, and Qiang Yu, and Junying Yuan
June 1985, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!