| D008928 |
Mitochondria |
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) |
Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions |
|
| D002460 |
Cell Line |
Established cell cultures that have the potential to propagate indefinitely. |
Cell Lines,Line, Cell,Lines, Cell |
|
| D004272 |
DNA, Mitochondrial |
Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. |
Mitochondrial DNA,mtDNA |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000255 |
Adenosine Triphosphate |
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. |
ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2 |
|
| D000900 |
Anti-Bacterial Agents |
Substances that inhibit the growth or reproduction of BACTERIA. |
Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial |
|
| D000968 |
Antimycin A |
An antibiotic substance produced by Streptomyces species. It inhibits mitochondrial respiration and may deplete cellular levels of ATP. Antimycin A1 has been used as a fungicide, insecticide, and miticide. (From Merck Index, 12th ed) |
Butanoic acid, 2(or 3)-methyl-, 3-((3-(formylamino)-2-hydroxybenzoyl)amino)-8-hexyl-2,6-dimethyl-4,9-dioxo-1,5-dioxonan-7-yl ester,Antimycin A1 |
|
| D001343 |
Autophagy |
The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. |
Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy |
|
| D014450 |
Electron Transport Complex III |
A multisubunit enzyme complex that contains CYTOCHROME B GROUP; CYTOCHROME C1; and iron-sulfur centers. It catalyzes the oxidation of ubiquinol to UBIQUINONE, and transfers the electrons to CYTOCHROME C. In MITOCHONDRIA the redox reaction is coupled to the transport of PROTONS across the inner mitochondrial membrane. |
Complex III,Cytochrome bc1 Complex,Ubiquinol-Cytochrome-c Reductase,Coenzyme Q-Cytochrome-c Reductase,Coenzyme QH2-Cytochrome-c Reductase,Core I Protein, UCCreductase,Core I Protein, Ubiquinol-Cytochrome c Reductase,Core II Protein, UCCreductase,Core II Protein, Ubiquinol-Cytochrome c Reductase,Cytochrome b-c2 Oxidoreductase,Cytochrome bc1,Dihydroubiquinone-Cytochrome-c Reductase,QH(2)-Cytochrome-c Reductase,QH(2)-Ferricytochrome-c Oxidoreductase,Ubihydroquinone-Cytochrome-c Reductase,Ubiquinol-Cytochrome c Reductase,Ubiquinone-Cytochrome b-c2 Oxidoreductase,Coenzyme Q Cytochrome c Reductase,Coenzyme QH2 Cytochrome c Reductase,Core I Protein, Ubiquinol Cytochrome c Reductase,Core II Protein, Ubiquinol Cytochrome c Reductase,Cytochrome b c2 Oxidoreductase,Dihydroubiquinone Cytochrome c Reductase,Reductase, Ubiquinol-Cytochrome c,Ubihydroquinone Cytochrome c Reductase,Ubiquinol Cytochrome c Reductase,Ubiquinone Cytochrome b c2 Oxidoreductase |
|
| D017382 |
Reactive Oxygen Species |
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. |
Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen |
|