Gamma-aminobutyric acid(B) receptor activation suppresses stimulus-evoked burst firing in rat substantia nigra reticulata neurons. 2012

Ke-Zhong Shen, and Steven W Johnson
Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, USA.

Previous whole-cell patch-pipette studies showed that focal electrical stimulation of the subthalamic nucleus (STN) evokes a long-lasting complex excitatory postsynaptic currents (EPSC) and synaptically evoked bursts of action potentials in substantia nigra pars reticulata (SNR) neurons. Although synaptically evoked bursting may play a role in normal physiology, excessive burst firing correlates with symptoms of Parkinson's disease. We used patch-pipette recordings in rat brain slices to study the effects of baclofen on complex EPSCs and STN-induced burst firing in SNR neurons. Baclofen (1 µM) caused a reversible, 73% reduction in complex EPSCs, and this effect was blocked by the γ-aminobutyric acid(B) antagonist CGP35348 (100 µM). Using the loose-patch method to record extracellular potentials, a lower concentration of baclofen (100 nM) inhibited STN-evoked bursts, while leaving spontaneous firing of action potentials less affected. We suggest that strategies that selectively inhibit burst firing in the SNR might have therapeutic potential in the treatment of Parkinson's disease.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001418 Baclofen A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission. Baclophen,Chlorophenyl GABA,Apo-Baclofen,Atrofen,Ba-34,647,Ba-34647,Baclofen AWD,Baclofène-Irex,Baclospas,CIBA-34,647-BA,Clofen,Gen-Baclofen,Genpharm,Lebic,Lioresal,Liorésal,Nu-Baclo,PCP-GABA,PMS-Baclofen,beta-(Aminomethyl)-4-chlorobenzenepropanoic Acid,beta-(p-Chlorophenyl)-gamma-aminobutyric Acid,AWD, Baclofen,Apo Baclofen,ApoBaclofen,Ba34,647,Ba34647,Baclofène Irex,BaclofèneIrex,CIBA34,647BA,GABA, Chlorophenyl,Gen Baclofen,GenBaclofen,Nu Baclo,NuBaclo,PMS Baclofen,PMSBaclofen
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D058786 GABA-B Receptor Agonists Endogenous compounds and drugs that bind to and activate GABA-B RECEPTORS. GABA-B Agonists,GABA-B Receptor Agonist,Agonist, GABA-B Receptor,Agonists, GABA-B,Agonists, GABA-B Receptor,GABA B Agonists,GABA B Receptor Agonist,GABA B Receptor Agonists,Receptor Agonist, GABA-B,Receptor Agonists, GABA-B
D018080 Receptors, GABA-B A subset of GABA RECEPTORS that signal through their interaction with HETEROTRIMERIC G-PROTEINS. Baclofen Receptors,GABA-B Receptors,Baclofen Receptor,GABA receptor rho1,GABA type B receptor, subunit 1,GABA(B)R1,GABA(B)R1 receptor,GABA(B)R1a protein,GABA(B)R1a receptor,GABA(B)R1b protein,GABA(B)R1b receptor,GABA-B Receptor,GABBR1 protein,GB1a protein,GB1b protein,GBR1B protein,Receptors, Baclofen,rho1 subunit, GABA receptor

Related Publications

Ke-Zhong Shen, and Steven W Johnson
April 1983, Science (New York, N.Y.),
Ke-Zhong Shen, and Steven W Johnson
September 1999, Journal of neurophysiology,
Ke-Zhong Shen, and Steven W Johnson
November 1996, Proceedings of the National Academy of Sciences of the United States of America,
Ke-Zhong Shen, and Steven W Johnson
December 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Ke-Zhong Shen, and Steven W Johnson
November 1997, Neuroscience research,
Ke-Zhong Shen, and Steven W Johnson
December 1999, The Journal of pharmacology and experimental therapeutics,
Ke-Zhong Shen, and Steven W Johnson
November 1993, Synapse (New York, N.Y.),
Ke-Zhong Shen, and Steven W Johnson
January 1993, European journal of pharmacology,
Ke-Zhong Shen, and Steven W Johnson
December 1996, European journal of pharmacology,
Copied contents to your clipboard!