Synthesis of urokinase-type plasminogen activator and of type-1 plasminogen activator inhibitor in neuronal cultures of human fetal brain: stimulation by phorbol ester. 1990

M Presta, and M G Ennas, and S Torelli, and G Ragnotti, and F Gremo
Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Italy.

Human neuronal brain cultures established from 12- and 14-week-old fetuses synthesize and secrete urokinase-type plasminogen activator (uPA) and limited amounts of tissue-type plasminogen activator (tPA). These cells also produce and secrete the endothelial cell-type PA inhibitor (PAI-1), which forms sodium dodecyl sulfate-stable tPA/PAI-1 complexes in the culture medium. Immunocytochemistry shows a predominant localization of uPA, tPA, and PAI-1 in neuronal cells, with only a very weak positivity detectable in the few glial cells present in these cultures. The protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulates the synthesis of both uPA and PAI-1, resulting in a final increase in the plasmin-generating capacity of neuronal cell cultures. No significant effect is observed, however, when cells are treated with the TPA analogue 4 alpha-phorbol 12,13-didecanoate, which is inactive as a PKC inducer, or with the neurotrophic polypeptide basic fibroblast growth factor. These data represent the first characterization of the plasmin-generating system in human fetal brain neurons and suggest a role for PKC in the modulation of uPA and PAI-1 synthesis.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014568 Urokinase-Type Plasminogen Activator A proteolytic enzyme that converts PLASMINOGEN to FIBRINOLYSIN where the preferential cleavage is between ARGININE and VALINE. It was isolated originally from human URINE, but is found in most tissues of most VERTEBRATES. Plasminogen Activator, Urokinase-Type,U-Plasminogen Activator,Urinary Plasminogen Activator,Urokinase,Abbokinase,Kidney Plasminogen Activator,Renokinase,Single-Chain Urokinase-Type Plasminogen Activator,U-PA,Single Chain Urokinase Type Plasminogen Activator,U Plasminogen Activator,Urokinase Type Plasminogen Activator
D015849 Plasminogen Inactivators Important modulators of the activity of plasminogen activators. The inhibitors belong to the serpin family of proteins and inhibit both the tissue-type and urokinase-type plasminogen activators. Plasminogen Activator Inhibitor,Plasminogen Activator Inhibitors,Endothelial Plasminogen Activator Inhibitors,Placental Plasminogen Activator Inhibitors,Plasminogen Activator Inhibitors, Endothelial,Plasminogen Activator Inhibitors, Placental,Activator Inhibitor, Plasminogen,Inactivators, Plasminogen,Inhibitor, Plasminogen Activator,Inhibitors, Plasminogen Activator

Related Publications

M Presta, and M G Ennas, and S Torelli, and G Ragnotti, and F Gremo
January 1997, Oncology reports,
M Presta, and M G Ennas, and S Torelli, and G Ragnotti, and F Gremo
February 1994, Cancer research,
M Presta, and M G Ennas, and S Torelli, and G Ragnotti, and F Gremo
January 1992, The Journal of clinical endocrinology and metabolism,
M Presta, and M G Ennas, and S Torelli, and G Ragnotti, and F Gremo
January 1998, Acta neurochirurgica,
M Presta, and M G Ennas, and S Torelli, and G Ragnotti, and F Gremo
January 1992, Glia,
M Presta, and M G Ennas, and S Torelli, and G Ragnotti, and F Gremo
March 2011, The Journal of biological chemistry,
M Presta, and M G Ennas, and S Torelli, and G Ragnotti, and F Gremo
November 1988, The Journal of biological chemistry,
Copied contents to your clipboard!