Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. 2011

Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322, USA.

Blockade of the CD40/CD154 pathway potently attenuates T-cell responses in models of autoimmunity, inflammation, and transplantation. Indeed, CD40 pathway blockade remains one of the most powerful methods of prolonging graft survival in models of transplantation. But despite this effectiveness, the cellular and molecular mechanisms underlying the protective effects of CD40 pathway blockade are incompletely understood. Furthermore, the relative contributions of deletion, anergy, and regulation have not been measured in a model in which donor-reactive CD4(+) and CD8(+) T-cell responses can be assessed simultaneously. To investigate the impact of CD40/CD154 pathway blockade on graft-specific T-cell responses, a transgenic mouse model was used in which recipients containing ovalbumin-specific CD4(+) and CD8(+) TCR transgenic T cells were grafted with skin expressing ovalbumin in the presence or absence of anti-CD154 and donor-specific transfusion. The results indicated that CD154 blockade altered the kinetics of donor-reactive CD8(+) T-cell expansion, delaying differentiation into IFN-γ(+) TNF(+) multifunctional cytokine producers. The eventual differentiation of cytokine-producing effectors in tolerant animals coincided with the emergence of an antigen-specific CD4(+) CD25(hi) Foxp3(+) T-cell population, which did not arise from endogenous natural T(reg) but rather were peripherally generated from naïve Foxp3(-) precursors.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D016038 Skin Transplantation The grafting of skin in humans or animals from one site to another to replace a lost portion of the body surface skin. Dermatoplasty,Grafting, Skin,Transplantation, Skin,Dermatoplasties,Graftings, Skin,Skin Grafting,Skin Graftings,Skin Transplantations,Transplantations, Skin
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
March 2024, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
September 2019, Xenotransplantation,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
April 2013, European journal of immunology,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
March 2006, Chinese medical journal,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
February 2007, International immunopharmacology,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
December 2013, Immune network,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
May 2009, Journal of dermatological science,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
May 2008, Journal of leukocyte biology,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
August 2009, International journal of clinical and experimental medicine,
Ivana R Ferrer, and Maylene E Wagener, and Minqing Song, and Allan D Kirk, and Christian P Larsen, and Mandy L Ford
July 2008, Journal of virology,
Copied contents to your clipboard!