Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells. 2012
BACKGROUND Sertoli cells metabolize glucose producing lactate for developing germ cells. As insulin regulates glucose uptake and its disturbance/insensitivity is associated with diabetes mellitus, we aimed to determine the effect of insulin deprivation in human Sertoli cell (hSC) metabolism and metabolism-associated gene expression. METHODS hSC-enriched primary cultures were maintained in the absence/presence of insulin and metabolite variations were determined by (1)H-NMR. mRNA expression levels of glucose transporters (GLUT1, GLUT3), lactate dehydrogenase (LDHA) and monocarboxylate transporter (MCT4) were determined by RT-PCR. RESULTS Insulin deprivation resulted in decreased lactate production and in decrease of glucose consumption that was completely reverted after 6h. Cells of both groups consumed similar amounts of glucose. In insulin-deprived cells, transcript levels of genes associated to lactate metabolism (LDHA and MCT4) were decreased. Transcript levels of genes involved in glucose uptake exhibited a divergent variation: GLUT3 levels were decreased while GLUT1 levels increased. Insulin-deprived hSCs presented: 1) altered glucose consumption and lactate secretion; 2) altered expression of metabolism-associated genes involved in lactate production and export; 3) an adaptation of glucose uptake by modulating the expression of GLUT1 and GLUT3. CONCLUSIONS This is the first report regarding the effect of insulin-deprivation on hSC metabolism.