Effect of histamine antagonists on myocardial carcinine metabolism during compound 48/80-induced shock. 1990

J C Fitzpatrick, and H Fisher, and L Flancbaum
Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick.

Carcinine (beta-alanylhistamine) is an imidazole dipeptide that exists in mammalian hearts, increases cardiac contractility, and is metabolically linked to carnosine (beta-alanylhistidine), a non-mast cell histidine and histamine precursor during stress. We have previously shown that tissue carnosine levels are regulated by H1 and H2 receptors. This study evaluated the effects of H1, H2, and mast cell degranulation blockers on metabolism of carcinine and related imidazoles during shock induced by compound 48/80, a mast cell degranulator. Fifty 125-g male Sprague-Dawley rats were divided into nine ip treatment groups: saline, 48/80, lodoxamide (LOD, mast cell degranulation inhibitor), diphenhydramine (DPH, H1 antagonist), cimetidine (CIM, H2 antagonist), LOD + 48/80, CIM + 48/80, DPH + 48/80, or DPH + CIM + 48/80. Heart tissue was analyzed at 30 min by HPLC. 48/80 caused decreases in myocardial carnosine (P less than 0.01) and histidine (P less than 0.0001) levels and concomitant increases in carcinine (P less than 0.01), histamine (P less than 0.01), and 3-methylhistamine (P less than 0.05) compared to those of controls. These changes were inhibited by LOD or DPH. Treatment with CIM significantly increased myocardial carcinine levels compared to 48/80 alone (P less than 0.001) without an additional effect on the other compounds. These data indicate that carcinine is involved in the cardiac response to stress via the carnosine-histidine-histamine pathway. Compound 48/80-induced shock increases histamine metabolism via this pathway resulting in mobilization of myocardial carnosine and histidine to carcinine and histamine; this effect is increased by H2 receptor blockade.

UI MeSH Term Description Entries
D008297 Male Males
D008761 Methylhistamines Histamine substituted in any position with one or more methyl groups. Many of these are agonists for the H1, H2, or both histamine receptors.
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010072 Oxamic Acid Amino-substituted glyoxylic acid derivative. Oxalamic Acid,Oxamidic Acid,Aminooxoacetic Acid,Acid, Aminooxoacetic,Acid, Oxalamic,Acid, Oxamic,Acid, Oxamidic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011969 Receptors, Histamine H1 A class of histamine receptors discriminated by their pharmacology and mode of action. Most histamine H1 receptors operate through the inositol phosphate/diacylglycerol second messenger system. Among the many responses mediated by these receptors are smooth muscle contraction, increased vascular permeability, hormone release, and cerebral glyconeogenesis. (From Biochem Soc Trans 1992 Feb;20(1):122-5) H1 Receptor,Histamine H1 Receptors,H1 Receptors,Histamine H1 Receptor,Receptors, H1,H1 Receptor, Histamine,H1 Receptors, Histamine,Receptor, H1,Receptor, Histamine H1
D011970 Receptors, Histamine H2 A class of histamine receptors discriminated by their pharmacology and mode of action. Histamine H2 receptors act via G-proteins to stimulate ADENYLYL CYCLASES. Among the many responses mediated by these receptors are gastric acid secretion, smooth muscle relaxation, inotropic and chronotropic effects on heart muscle, and inhibition of lymphocyte function. (From Biochem Soc Trans 1992 Feb;20(1):122-5) Histamine H2 Receptors,H2 Receptors,Receptors, H2,H2 Receptors, Histamine
D002336 Carnosine A naturally occurring dipeptide neuropeptide found in muscles. Carnosine Hydrochloride,Carnosine, (D-His)-Isomer,L-Carnosine,beta-Alanylhistidine,Hydrochloride, Carnosine,L Carnosine,beta Alanylhistidine
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002927 Cimetidine A histamine congener, it competitively inhibits HISTAMINE binding to HISTAMINE H2 RECEPTORS. Cimetidine has a range of pharmacological actions. It inhibits GASTRIC ACID secretion, as well as PEPSIN and GASTRIN output. Altramet,Biomet,Biomet400,Cimetidine HCl,Cimetidine Hydrochloride,Eureceptor,Histodil,N-Cyano-N'-methyl-N''-(2-(((5-methyl-1H-imidazol-4-yl)methyl)thio)ethyl)guanidine,SK&F-92334,SKF-92334,Tagamet,HCl, Cimetidine,Hydrochloride, Cimetidine,SK&F 92334,SK&F92334,SKF 92334,SKF92334

Related Publications

J C Fitzpatrick, and H Fisher, and L Flancbaum
December 1975, Agents and actions,
J C Fitzpatrick, and H Fisher, and L Flancbaum
January 1979, International archives of allergy and applied immunology,
J C Fitzpatrick, and H Fisher, and L Flancbaum
January 1963, International archives of allergy and applied immunology,
J C Fitzpatrick, and H Fisher, and L Flancbaum
June 1998, European journal of pharmacology,
J C Fitzpatrick, and H Fisher, and L Flancbaum
February 1958, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J C Fitzpatrick, and H Fisher, and L Flancbaum
February 1953, Archives internationales de pharmacodynamie et de therapie,
J C Fitzpatrick, and H Fisher, and L Flancbaum
September 1951, British journal of pharmacology and chemotherapy,
J C Fitzpatrick, and H Fisher, and L Flancbaum
October 1959, The Journal of pathology and bacteriology,
J C Fitzpatrick, and H Fisher, and L Flancbaum
January 1956, Texas reports on biology and medicine,
J C Fitzpatrick, and H Fisher, and L Flancbaum
July 1991, Pharmacology & toxicology,
Copied contents to your clipboard!