Methandrostenolone metabolism in humans: potential problems associated with isolation and identification of metabolites. 1990

L M Harrison, and P V Fennessey
Department of Pediatrics, University of Colorado Health Sciences Center, Denver 80262.

Methandrostenolone dose (amount and duration) and methods of isolation from urine can influence the identification and quantitation of methandrostenolone metabolites. Long-term use of methandrostenolone at high dosages led to the appearance of unmetabolized drug in the urine and contributed to the identification of a previously unreported metabolite, 3 beta, 6 section, 17 beta-trihydroxy-17 alpha-methyl-5 section-1-androstene. Exposure of methandrostenolone in vitro to acid conditions induced a retropinacol rearrangement in the D-ring of the methandrostenolone molecule, causing the formation of 18-nor-17,17-dimethyl-1,4,13(14)-androstatrien-3-one in large amounts. The same acidic conditions led to the addition of a hydroxyl at the 6 position of the B-ring of either the retropinacol rearrangement products or native methandrostenolone resulting in the formation of 6 beta-hydroxy-18-nor-17,17-dimethyl-1,4,13(14)-androstatrien-3-one, 6 alpha- hydroxy-18-nor-17,17-dimethyl-1,4,13(14)-androstatrien, 6 beta-17 alpha-methyl-1,4-androstadien-3-one and 6 alpha,17 beta-dihydroxy-17 alpha-methyl-1,4-androstadien-3-one. Hydroxylation of native methandrostenolone at the 6 position also occurs endogenously. However, no evidence of an endogenous retropinacol rearrangement was found. Silylating agents alone can induce the formation of small amounts of 6 beta-17 beta-dihydroxy-17 alpha-methyl-1,4-androstadien-3-one. Discrepancies between previously published reports on methandrostenolone metabolism in man are discussed and compared with an animal model.

UI MeSH Term Description Entries
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D008696 Methandrostenolone A synthetic steroid with anabolic properties that are more pronounced than its androgenic effects. It has little progestational activity. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1188) Dehydromethyltestosterone,Metandienone,Methandienone,Dianabol,Metanabol,Nerobol
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D013177 Sports Activities or games, usually involving physical effort or skill. Reasons for engagement in sports include pleasure, competition, and/or financial reward. Athletics,Athletic,Sport
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

L M Harrison, and P V Fennessey
January 1994, Drug metabolism and disposition: the biological fate of chemicals,
L M Harrison, and P V Fennessey
August 1996, Drug metabolism and disposition: the biological fate of chemicals,
L M Harrison, and P V Fennessey
August 2000, Drug metabolism and disposition: the biological fate of chemicals,
L M Harrison, and P V Fennessey
November 2008, Drug metabolism and disposition: the biological fate of chemicals,
L M Harrison, and P V Fennessey
August 1997, Drug metabolism and disposition: the biological fate of chemicals,
L M Harrison, and P V Fennessey
June 1997, Drug metabolism and disposition: the biological fate of chemicals,
L M Harrison, and P V Fennessey
January 1984, Drug metabolism and disposition: the biological fate of chemicals,
L M Harrison, and P V Fennessey
January 1980, Drug metabolism and disposition: the biological fate of chemicals,
L M Harrison, and P V Fennessey
May 2023, Human molecular genetics,
L M Harrison, and P V Fennessey
January 1994, European journal of drug metabolism and pharmacokinetics,
Copied contents to your clipboard!