Effects of porcine granulocyte-macrophage colony-stimulating factor on porcine in vitro-fertilized embryos. 2012

S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.

This study investigated the effects of porcine granulocyte-macrophage colony-stimulating factor (pGM-CSF) on the developmental potential of porcine in vitro-fertilized (IVF) embryos in chemically and semidefined (with BSA) medium. In experiment 1, zygotes were treated with different concentrations of pGM-CSF (0, 2, 10, 100 ng/mL). The results indicated that 10 ng/mL pGM-CSF significantly (P < 0.05) increased blastocyst development and total cell number (15.1% and 53.5, respectively) compared with the control (6.1%, and 38.8, respectively). Comparing blastocyst formation, early and expanded blastocyst formation was significantly higher in the 10 ng/mL-pGM-CSF group than in the control on Days 6 and 7 of the culture period. However, there was no significant difference in cleavage rate. Experiment 2 demonstrated that pGM-CSF influenced the percentage of blastocyst formation and total cell number when pGM-CSF was added during Days 4 to 7 (14.6% and 53.9, respectively) or Days 0 to 7 (15.2% and 54.0, respectively) compared with the control (7.8% and 43.1, respectively) and compared with Days 0 to 3 (8.7% and 42.5, respectively). Similarly, early blastocyst formation rates were significantly higher at Days 4 to 7 than in the control, and expanded blastocyst formation was significantly higher at Days 4 to 7 or Days 0 to 7. No significant difference in cleavage rates appeared among the groups. In experiment 3, in the presence of BSA, pGM-CSF also increased the percentage of embryos that developed to the blastocyst stage and the total cell number (20.3% and 59.8, respectively) compared with the control (14.9% and 51.4, respectively), whereas there was no significant difference in cleavage rate. Experiment 4 found that the total cell number and the number of cells in the inner cell mass (ICM) were significantly increased compared with the control when zygotes were cultured in either porcine zygotic medium (PZM)-3 or PZM-4 supplemented with 10 ng/mL pGM-CSF. The number of trophectoderm (TE) cells was significantly higher in PZM-3 medium supplemented with pGM-CSF than in the control, and the number tended to increase (P = 0.058) in PZM-4 medium supplemented with pGM-CSF. The ratio of inner cell mass to trophectoderm cells was significantly higher in PZM-4 supplemented with 10 ng/mL pGM-CSF, but not in PZM-3. In experiment 5, it was found that the male pronuclear formation rate, monospermic penetration and sperm/oocyte were 95.4%, 37.2%, and 2.4, respectively. Together, these results suggest that pGM-CSF may have a physiological role in promoting the development of porcine preimplantation embryos and regulating cell viability and that addition of pGM-CSF to IVC medium at Days 4 to 7 or 0 to 7 improves the developmental potential of porcine IVF embryos.

UI MeSH Term Description Entries
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations
D005307 Fertilization in Vitro An assisted reproductive technique that includes the direct handling and manipulation of oocytes and sperm to achieve fertilization in vitro. Test-Tube Fertilization,Fertilizations in Vitro,In Vitro Fertilization,Test-Tube Babies,Babies, Test-Tube,Baby, Test-Tube,Fertilization, Test-Tube,Fertilizations, Test-Tube,In Vitro Fertilizations,Test Tube Babies,Test Tube Fertilization,Test-Tube Baby,Test-Tube Fertilizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013084 Sperm-Ovum Interactions Interactive processes between the oocyte (OVUM) and the sperm (SPERMATOZOA) including sperm adhesion, ACROSOME REACTION, sperm penetration of the ZONA PELLUCIDA, and events leading to FERTILIZATION. Ovum-Sperm Interactions,Sperm Penetration,Egg-Sperm Interactions,Gamete Interactions,Oocyte-Sperm Interactions,Sperm-Egg Interactions,Sperm-Egg Penetration,Sperm-Oocyte Interactions,Sperm-Oocyte Penetration,Sperm-Ovum Penetration,Sperm-Zona Pellucida Penetration,Egg Sperm Interactions,Egg-Sperm Interaction,Gamete Interaction,Oocyte Sperm Interactions,Oocyte-Sperm Interaction,Ovum Sperm Interactions,Ovum-Sperm Interaction,Sperm Egg Interactions,Sperm Egg Penetration,Sperm Oocyte Interactions,Sperm Oocyte Penetration,Sperm Ovum Interactions,Sperm Ovum Penetration,Sperm Penetrations,Sperm Zona Pellucida Penetration,Sperm-Egg Interaction,Sperm-Egg Penetrations,Sperm-Oocyte Interaction,Sperm-Oocyte Penetrations,Sperm-Ovum Interaction,Sperm-Ovum Penetrations,Sperm-Zona Pellucida Penetrations
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D046149 Embryo Culture Techniques The technique of maintaining or growing mammalian EMBRYOS in vitro. This method offers an opportunity to observe EMBRYONIC DEVELOPMENT; METABOLISM; and susceptibility to TERATOGENS. Blastocyst Culture Techniques,Blastocyst Culture Technique,Culture Technique, Blastocyst,Culture Technique, Embryo,Culture Techniques, Blastocyst,Culture Techniques, Embryo,Embryo Culture Technique
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development

Related Publications

S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
September 2012, The Journal of veterinary medical science,
S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
October 1995, Immunology and cell biology,
S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
November 1997, Biology of reproduction,
S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
July 1992, The New England journal of medicine,
S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
July 1992, The New England journal of medicine,
S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
August 2004, Animal reproduction science,
S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
May 1994, Current opinion in hematology,
S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
January 1990, Immunology series,
S S Kwak, and S H Jeung, and D Biswas, and Y B Jeon, and S H Hyun
January 1990, Biotherapy (Dordrecht, Netherlands),
Copied contents to your clipboard!