Influence of tumor cell culture supernatants on macrophage functional polarization: in vitro models of macrophage-tumor environment interaction. 2011

Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
Infection and Immunity Laboratory, National Institute for Research and Development in Microbiology and Immunology Cantacuzino, 103 Spl Independentei, sector 5, 050096 Bucharest, Romania.

OBJECTIVE Macrophages are heterogeneous cells with extensive functional plasticity; they can change their functional profiles repeatedly in response to environmental changes anywhere between their extreme phenotypical programs (labeled as M1 and M2 polarization, respectively). In terms of antitumoral immune response, M1 macrophages are considered to be beneficial, while M2 macrophages supposedly promote tumor progression. Tumor-associated macrophages (TAMs) represent a major leukocyte population present in many tumors. Although many studies indicate that TAMs elicit several M2-associated protumoral functions, including promotion of angiogenesis, matrix remodeling and suppression of adaptive immunity, their role regarding tumor progression is still controversial. The aim of the present study was to develop an appropriate in vitro model to study the effect of tumor-secreted soluble factors on the functional phenotype of macrophages. METHODS THP-1 human monocytic line cells and peripheral blood mononuclear cells from healthy volunteers were used for macrophage differentiation; primary tumor cell culture supernatants or tumor cell line supernatants were employed along with various cytokines, growth factors and other stimuli to design different model variants and to better mimic the in vivo tumor microenvironment. RESULTS The cytokine secretion patterns of these macrophages suggest that primary tumor cell culture supernatants are able to switch the macrophage phenotype or to induce functional polarization of macrophages toward a mixed M1/M2 phenotype. Conclusions. These data support the hypothesis that TAM behavior is modulated by the tumor microenvironment itself.

UI MeSH Term Description Entries
D007822 Laryngeal Neoplasms Cancers or tumors of the LARYNX or any of its parts: the GLOTTIS; EPIGLOTTIS; LARYNGEAL CARTILAGES; LARYNGEAL MUSCLES; and VOCAL CORDS. Cancer of Larynx,Laryngeal Cancer,Larynx Neoplasms,Cancer of the Larynx,Larynx Cancer,Neoplasms, Laryngeal,Cancer, Laryngeal,Cancer, Larynx,Cancers, Laryngeal,Cancers, Larynx,Laryngeal Cancers,Laryngeal Neoplasm,Larynx Cancers,Larynx Neoplasm,Neoplasm, Laryngeal,Neoplasm, Larynx,Neoplasms, Larynx
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015179 Colorectal Neoplasms Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorectal cancer include chronic ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI; exposure to ASBESTOS; and irradiation of the CERVIX UTERI. Colorectal Cancer,Colorectal Carcinoma,Colorectal Tumors,Neoplasms, Colorectal,Cancer, Colorectal,Cancers, Colorectal,Carcinoma, Colorectal,Carcinomas, Colorectal,Colorectal Cancers,Colorectal Carcinomas,Colorectal Neoplasm,Colorectal Tumor,Neoplasm, Colorectal,Tumor, Colorectal,Tumors, Colorectal

Related Publications

Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
January 1983, Nouvelle revue francaise d'hematologie,
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
January 1978, Neoplasma,
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
January 1980, Journal of the Reticuloendothelial Society,
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
December 2018, European journal of microbiology & immunology,
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
February 1986, Tumori,
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
September 2016, Tissue engineering. Part A,
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
May 1987, Clinical immunology and immunopathology,
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
June 1971, Science (New York, N.Y.),
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
December 2015, Research in veterinary science,
Iuliana Caras, and Catalin Tucureanu, and Lucian Lerescu, and Ramona Pitica, and Laura Melinceanu, and Stefan Neagu, and Aurora Salageanu
July 1977, Science (New York, N.Y.),
Copied contents to your clipboard!