Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli. 2012

Christos A Kyratsous, and Christos A Panagiotidis
Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.

Molecular chaperones or heat-shock proteins (HSPs) are protein machines that interact with unfolded or partially folded polypeptides and assist them in attaining their proper conformation. The folding reaction relies on a complex array of scaffolding effects and ATP-driven conformational changes that mediate the temporary unfolding and subsequent refolding of protein substrates. DnaK and GroEL are the two major Escherichia coli chaperones. They belong to the HSP70 and HSP60 families of proteins, respectively, and play a major role in protein folding. Here, we describe a set of bacterial expression vectors that permits the fusion of a protein of interest to DnaK or GroEL and its subsequent quantitative expression in a soluble, easily purifiable form. We also provide a set of compatible co-chaperone expression constructs that permit the simultaneous co-expression of the DnaK and GroEL physiological partners to further increase protein solubility. The system was successfully tested using the murine prion protein (PrP). Although PrP is normally insoluble when expressed in E. coli, we show that utilizing our vectors it can be produced in a soluble form as a DnaK or GroEL fusion. This system is useful for the production of a large array of proteins that fail to fold properly when expressed in E. coli.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011328 Prions Small proteinaceous infectious particles which resist inactivation by procedures that modify NUCLEIC ACIDS and contain an abnormal isoform of a cellular protein which is a major and necessary component. The abnormal (scrapie) isoform is PrPSc (PRPSC PROTEINS) and the cellular isoform PrPC (PRPC PROTEINS). The primary amino acid sequence of the two isoforms is identical. Human diseases caused by prions include CREUTZFELDT-JAKOB SYNDROME; GERSTMANN-STRAUSSLER SYNDROME; and INSOMNIA, FATAL FAMILIAL. Mink Encephalopathy Virus,Prion,Encephalopathy Virus, Mink
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

Christos A Kyratsous, and Christos A Panagiotidis
January 2022, Protein and peptide letters,
Christos A Kyratsous, and Christos A Panagiotidis
February 2018, Protein expression and purification,
Christos A Kyratsous, and Christos A Panagiotidis
December 2014, Microbial cell factories,
Christos A Kyratsous, and Christos A Panagiotidis
January 2005, Methods in molecular biology (Clifton, N.J.),
Christos A Kyratsous, and Christos A Panagiotidis
October 2006, Journal of industrial microbiology & biotechnology,
Christos A Kyratsous, and Christos A Panagiotidis
January 2000, Methods in enzymology,
Christos A Kyratsous, and Christos A Panagiotidis
July 2022, International journal of molecular sciences,
Christos A Kyratsous, and Christos A Panagiotidis
May 1996, The Journal of biological chemistry,
Christos A Kyratsous, and Christos A Panagiotidis
January 2005, Microbial cell factories,
Christos A Kyratsous, and Christos A Panagiotidis
June 2007, Protein expression and purification,
Copied contents to your clipboard!