Sequence specificity of the human mRNA N6-adenosine methylase in vitro. 1990

J E Harper, and S M Miceli, and R J Roberts, and J L Manley
Department of Biological Sciences, Columbia University, New York, NY 10027.

N6-adenosine methylation is a frequent modification of mRNAs and their precursors, but little is known about the mechanism of the reaction or the function of the modification. To explore these questions, we developed conditions to examine N6-adenosine methylase activity in HeLa cell nuclear extracts. Transfer of the methyl group from S-[3H methyl]-adenosylmethionine to unlabeled random copolymer RNA substrates of varying ribonucleotide composition revealed a substrate specificity consistent with a previously deduced consensus sequence, Pu[G greater than A]AC[A/C/U]. 32-P labeled RNA substrates of defined sequence were used to examine the minimum sequence requirements for methylation. Each RNA was 20 nucleotides long, and contained either the core consensus sequence GGACU, or some variation of this sequence. RNAs containing GGACU, either in single or multiple copies, were good substrates for methylation, whereas RNAs containing single base substitutions within the GGACU sequence gave dramatically reduced methylation. These results demonstrate that the N6-adenosine methylase has a strict sequence specificity, and that there is no requirement for extended sequences or secondary structures for methylation. Recognition of this sequence does not require an RNA component, as micrococcal nuclease pretreatment of nuclear extracts actually increased methylation efficiency.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015254 DNA Modification Methylases Enzymes that are part of the restriction-modification systems. They are responsible for producing a species-characteristic methylation pattern, on either adenine or cytosine residues, in a specific short base sequence in the host cell's own DNA. This methylated sequence will occur many times in the host-cell DNA and remain intact for the lifetime of the cell. Any DNA from another species which gains entry into a living cell and lacks the characteristic methylation pattern will be recognized by the restriction endonucleases of similar specificity and destroyed by cleavage. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. DNA Modification Methyltransferases,Modification Methylases,Methylases, DNA Modification,Methylases, Modification,Methyltransferases, DNA Modification,Modification Methylases, DNA,Modification Methyltransferases, DNA
D016384 Consensus Sequence A theoretical representative nucleotide or amino acid sequence in which each nucleotide or amino acid is the one which occurs most frequently at that site in the different sequences which occur in nature. The phrase also refers to an actual sequence which approximates the theoretical consensus. A known CONSERVED SEQUENCE set is represented by a consensus sequence. Commonly observed supersecondary protein structures (AMINO ACID MOTIFS) are often formed by conserved sequences. Consensus Sequences,Sequence, Consensus,Sequences, Consensus

Related Publications

J E Harper, and S M Miceli, and R J Roberts, and J L Manley
November 1990, The Journal of biological chemistry,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
January 1994, Biochimie,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
April 1977, Nucleic acids research,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
January 2019, Circulation,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
March 2019, Trends in biochemical sciences,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
September 2023, Nature structural & molecular biology,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
May 1982, Journal of bacteriology,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
February 1982, Nature,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
January 2020, Journal of cellular biochemistry,
J E Harper, and S M Miceli, and R J Roberts, and J L Manley
November 2001, The international journal of biochemistry & cell biology,
Copied contents to your clipboard!