Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site. 1979

P Wurmbach, and K H Nierhaus

A method for binding tRNA to ribosomes, introduced by Watanabe [Watanabe, S. (1972) J. Mol. Biol. 67, 443-457], permits nonenzymatic binding of N-acetyl-Phe-tRNA(Phe) to either the ribosomal aminoacyl-tRNA (A) or peptidyl-tRNA (P) site with almost 100% specificity. We used this method to analyze a possible codon-anticodon interaction at the P site for NH(2)-blocked aminoacyl-tRNA and deacylated tRNA. N-Acetyl-Phe-tRNA(Phe) bound only to the P site of poly(U)-programmed 70S ribosomes, not to poly(A)-programmed ribosomes. The reverse mRNA dependence was found for N-acetyl-Lys-tRNA(Lys). A series of purified deacylated tRNAs was analyzed in the poly(U) and poly(A) system for abilities to block P-site binding of N-acetyl-aminoacyl-tRNA and to direct the N-acetyl-aminoacyl-tRNA to the A site. Only the cognate tRNA was as effective as the bulk tRNA at a concentration of less than 1/20th that of bulk tRNA. tRNAs whose corresponding codons are identical or similar (same base character) in the first two codon positions showed a low but significant effect. The other noncognate tRNAs were unable to direct the NH(2)-blocked aminoacyl-tRNAs to the A site. Chlortetracycline interfered neither with the P-site binding of NH(2)-blocked aminoacyl-tRNA nor with the effects of deacylated tRNAs. Furthermore, the translocation blocker viomycin affected neither the binding to the A site nor that to the P site. These effects of both antibiotics indicate that both kinds of tRNA do not bind transiently in the A site before filling the P site and that codon-anticodon interaction takes place at the P site.

UI MeSH Term Description Entries
D002751 Chlortetracycline A TETRACYCLINE with a 7-chloro substitution. Aureocyclin,Aureomycin,Aureomycine,Biomycin,Chlorotetracycline,Chlortetracycline Bisulfate,Chlortetracycline Hydrochloride,Chlortetracycline Monohydrochloride,Chlortetracycline Sulfate (1:1),Chlortetracycline Sulfate (2:1),Chlortetracycline, 4-Epimer,Chlortetracycline, Calcium Salt,4-Epimer Chlortetracycline,Bisulfate, Chlortetracycline,Calcium Salt Chlortetracycline,Chlortetracycline, 4 Epimer,Hydrochloride, Chlortetracycline,Monohydrochloride, Chlortetracycline,Salt Chlortetracycline, Calcium
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014756 Viomycin A strongly basic peptide, antibiotic complex from several strains of Streptomyces. It is allergenic and toxic to kidneys and the labyrinth. Viomycin is used in tuberculosis as several different salts and in combination with other agents. Florimycin,Tuberactinomycin B,Celiomycin,Vinactane,Viocin,Viomicin,Viomycins

Related Publications

P Wurmbach, and K H Nierhaus
August 1979, Nature,
P Wurmbach, and K H Nierhaus
July 1986, The Journal of biological chemistry,
P Wurmbach, and K H Nierhaus
January 1984, Biochemistry international,
P Wurmbach, and K H Nierhaus
February 2008, Biochemical and biophysical research communications,
P Wurmbach, and K H Nierhaus
July 1987, Journal of molecular biology,
P Wurmbach, and K H Nierhaus
March 2006, Journal of the American Chemical Society,
Copied contents to your clipboard!