Trans fatty acids enhanced β-amyloid induced oxidative stress in nerve growth factor differentiated PC12 cells. 2012

Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
School of Medicine, Chung Shan Medical University, Taichung, Taiwan.

The effects of trans fatty acids, elaidic acid (trans-9, C18:1) and linoelaidic acid (trans-9, trans-12 C18:2), at 20 or 40 μM in nerve growth factor differentiated PC12 cells with or without beta-amyloid peptide (Aβ) were examined. Elaidic acid treatment alone did not affect cell viability and oxidative injury associated markers (P > 0.05). However, co-treatments of elaidic acid and Aβ led to more reduction in mitochondrial membrane potential (MMP) and Na⁺-K⁺-ATPase activity, and more increase in DNA fragmentation and 8-hydroxydeoxyguanosine (8-OHdG) production than Aβ treatment alone (P < 0.05). Linoelaidic acid alone exhibited apoptotic and oxidative effects in cells via decreasing MMP and Na⁺-K⁺-ATPase activity, increasing reactive oxygen species (ROS) level, lowering glutathione content and glutathione peroxidase (GPX) activity (P < 0.05). The co-treatments of linoelaidic acid with Aβ further enhanced oxidative damage via enhancing the generation of ROS, nitrite oxide and 8-OHdG, elevating caspase-3, caspase-8 and nitric oxide synthase activities, as well as declining GPX, catalase and superoxide dismutase activities (P < 0.05). These results suggested that the interaction of linoelaidic acid and Aβ promoted oxidative stress and impaired mitochondrial functions in neuronal cells.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003603 Cytotoxins Substances that are toxic to cells; they may be involved in immunity or may be contained in venoms. These are distinguished from CYTOSTATIC AGENTS in degree of effect. Some of them are used as CYTOTOXIC ANTIBIOTICS. The mechanism of action of many of these are as ALKYLATING AGENTS or MITOSIS MODULATORS. Cytolysins,Cytotoxic Agent,Cytotoxic Agents,Cytotoxin,Agent, Cytotoxic
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016229 Amyloid beta-Peptides Peptides generated from AMYLOID BETA-PEPTIDES PRECURSOR. An amyloid fibrillar form of these peptides is the major component of amyloid plaques found in individuals with Alzheimer's disease and in aged individuals with trisomy 21 (DOWN SYNDROME). The peptide is found predominantly in the nervous system, but there have been reports of its presence in non-neural tissue. Alzheimer beta-Protein,Amyloid Protein A4,Amyloid beta-Peptide,Amyloid beta-Protein,beta Amyloid,beta-Amyloid Protein,Alzheimer's ABP,Alzheimer's Amyloid Fibril Protein,Amyloid AD-AP,Amyloid Fibril Protein, Alzheimer's,Amyloid beta-Proteins,ABP, Alzheimer's,AD-AP, Amyloid,Alzheimer ABP,Alzheimer beta Protein,Alzheimers ABP,Amyloid AD AP,Amyloid beta Peptide,Amyloid beta Peptides,Amyloid beta Protein,Amyloid beta Proteins,Amyloid, beta,Protein A4, Amyloid,Protein, beta-Amyloid,beta Amyloid Protein,beta-Peptide, Amyloid,beta-Peptides, Amyloid,beta-Protein, Alzheimer,beta-Protein, Amyloid,beta-Proteins, Amyloid
D016716 PC12 Cells A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation. Pheochromocytoma Cell Line,Cell Line, Pheochromocytoma,Cell Lines, Pheochromocytoma,PC12 Cell,Pheochromocytoma Cell Lines
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D044242 Trans Fatty Acids UNSATURATED FATTY ACIDS that contain at least one double bond in the trans configuration, which results in a greater bond angle than the cis configuration. This results in a more extended fatty acid chain similar to SATURATED FATTY ACIDS, with closer packing and reduced fluidity. HYDROGENATION of unsaturated fatty acids increases the trans content. Trans Fatty Acid,Trans-Fatty Acids,Acid, Trans Fatty,Acids, Trans Fatty,Acids, Trans-Fatty,Fatty Acid, Trans,Fatty Acids, Trans
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
December 2015, Journal of agricultural and food chemistry,
Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
June 2015, Journal of molecular neuroscience : MN,
Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
September 1996, Journal of neurochemistry,
Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
June 2010, Journal of agricultural and food chemistry,
Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
August 2014, Neuroreport,
Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
January 2015, Journal of neurochemistry,
Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
June 2014, Food & function,
Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
September 1998, Journal of neuroscience research,
Shih-Jei Tsai, and Wen-hu Liu, and Mei-chin Yin
January 1995, Neuroscience letters,
Copied contents to your clipboard!