Effects of cholesterol on phospholipid membranes: inhibition of the interdigitated gel phase of F-DPPC and F-DPPC/DPPC. 2012

Eric A Smith, and Weidong Wang, and Phoebe K Dea
Department of Chemistry, Occidental College, Los Angeles, CA 90041, USA.

Unlike the parent phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the monofluorinated analog, 1-palmitoyl-2-(16-fluoropalmitoyl)sn-glycero-3-phosphocholine (F-DPPC), spontaneously forms an interdigitated gel phase (L(β)I) below the main transition temperature (T(m)). We have examined the effects of introducing cholesterol to F-DPPC and 1:1 F-DPPC/DPPC membranes using a combination of DSC, optical density, fluorescence intensity and polarization, (31)P NMR, and X-ray diffraction techniques. Cholesterol increases the fluidity of the gel phase, broadens the main transition, and decreases the main transition enthalpy. However, these results also reveal that there is an unusually large degree of phase coexistence between the L(β)I and non-interdigitated gel phases when cholesterol is added. Cholesterol encourages this phase segregation by partitioning into the thicker non-interdigitated domains. At higher cholesterol concentrations, the majority or all of the L(β)I phase of F-DPPC and 1:1 F-DPPC/DPPC is eliminated and is replaced by a non-interdigitated liquid-ordered (l(o)) phase with properties similar to DPPC/cholesterol. Consequently, cholesterol mitigates the influence the CF moiety has on the thermodynamic phase behavior of F-DPPC. Our findings demonstrate that there are multiple characteristics of cholesterol-rich membranes that disfavor interdigitation.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl
D044366 Transition Temperature The temperature at which a substance changes from one state or conformation of matter to another. Temperature, Transition,Boiling Point Temperature,Freezing Point Temperature,Melting Point Temperature,Boiling Point Temperatures,Freezing Point Temperatures,Melting Point Temperatures,Temperature, Boiling Point,Temperature, Freezing Point,Temperature, Melting Point,Temperatures, Boiling Point,Temperatures, Freezing Point,Temperatures, Melting Point,Temperatures, Transition,Transition Temperatures
D044367 Phase Transition A change of a substance from one form or state to another. Gas-Liquid-Solid Phase Transitions,Sol-Gel Phase Transition,Gas Liquid Solid Phase Transitions,Gas-Liquid-Solid Phase Transition,Phase Transition, Gas-Liquid-Solid,Phase Transition, Sol-Gel,Phase Transitions,Phase Transitions, Gas-Liquid-Solid,Phase Transitions, Sol-Gel,Sol Gel Phase Transition,Sol-Gel Phase Transitions,Transition, Gas-Liquid-Solid Phase,Transition, Sol-Gel Phase,Transitions, Gas-Liquid-Solid Phase,Transitions, Sol-Gel Phase

Related Publications

Eric A Smith, and Weidong Wang, and Phoebe K Dea
March 1993, Biochimica et biophysica acta,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
June 2009, General physiology and biophysics,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
January 1986, Biochimica et biophysica acta,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
December 2020, Biophysical journal,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
April 2019, Biochimica et biophysica acta. Biomembranes,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
December 1991, Chemistry and physics of lipids,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
August 2003, Physical review letters,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
January 2006, Biochimica et biophysica acta,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
July 2020, Chemistry and physics of lipids,
Eric A Smith, and Weidong Wang, and Phoebe K Dea
May 2015, Chemistry and physics of lipids,
Copied contents to your clipboard!