Blood pressure influences end-stage renal disease of Cd151 knockout mice. 2012

Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

Podocytes of the kidney adhere tightly to the underlying glomerular basement membrane (GBM) in order to maintain a functional filtration barrier. The clinical importance of podocyte binding to the GBM via an integrin-laminin-actin axis has been illustrated in models with altered function of α3β1 integrin, integrin-linked kinase, laminin-521, and α-actinin 4. Here we expanded on the podocyte-GBM binding model by showing that the main podocyte adhesion receptor, integrin α3β1, interacts with the tetraspanin CD151 in situ in humans. Deletion of Cd151 in mouse glomerular epithelial cells led to reduced adhesive strength to laminin by redistributing α3β1 at the cell-matrix interface. Moreover, in vivo podocyte-specific deletion of Cd151 led to glomerular nephropathy. Although global Cd151-null B6 mice were not susceptible to renal disease, as has been shown previously, increasing blood and transcapillary filtration pressure induced nephropathy in these mice. Importantly, blocking the angiotensin-converting enzyme in renal disease-susceptible global Cd151-null FVB mice prolonged their median life span. Together, these results establish CD151 as a crucial modifier of integrin-mediated adhesion of podocytes to the GBM and show that blood pressure is an important factor in the initiation and progression of Cd151 knockout-induced nephropathy.

UI MeSH Term Description Entries
D007676 Kidney Failure, Chronic The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION. ESRD,End-Stage Renal Disease,Renal Disease, End-Stage,Renal Failure, Chronic,Renal Failure, End-Stage,Chronic Kidney Failure,End-Stage Kidney Disease,Chronic Renal Failure,Disease, End-Stage Kidney,Disease, End-Stage Renal,End Stage Kidney Disease,End Stage Renal Disease,End-Stage Renal Failure,Kidney Disease, End-Stage,Renal Disease, End Stage,Renal Failure, End Stage
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000806 Angiotensin-Converting Enzyme Inhibitors A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility. ACE Inhibitor,ACE Inhibitors,Angiotensin Converting Enzyme Inhibitor,Angiotensin I-Converting Enzyme Inhibitor,Angiotensin-Converting Enzyme Inhibitor,Kininase II Inhibitor,Kininase II Inhibitors,Angiotensin I-Converting Enzyme Inhibitors,Angiotensin-Converting Enzyme Antagonists,Antagonists, Angiotensin-Converting Enzyme,Antagonists, Kininase II,Inhibitors, ACE,Inhibitors, Angiotensin-Converting Enzyme,Inhibitors, Kininase II,Kininase II Antagonists,Angiotensin Converting Enzyme Antagonists,Angiotensin Converting Enzyme Inhibitors,Angiotensin I Converting Enzyme Inhibitor,Angiotensin I Converting Enzyme Inhibitors,Antagonists, Angiotensin Converting Enzyme,Enzyme Antagonists, Angiotensin-Converting,Enzyme Inhibitor, Angiotensin-Converting,Enzyme Inhibitors, Angiotensin-Converting,II Inhibitor, Kininase,Inhibitor, ACE,Inhibitor, Angiotensin-Converting Enzyme,Inhibitor, Kininase II,Inhibitors, Angiotensin Converting Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D050199 Podocytes Highly differentiated epithelial cells of the visceral layer of BOWMAN CAPSULE of the KIDNEY. They are composed of a cell body with major CELL SURFACE EXTENSIONS and secondary fingerlike extensions called pedicels. They enwrap the KIDNEY GLOMERULUS capillaries with their cell surface extensions forming a filtration structure. The pedicels of neighboring podocytes interdigitate with each other leaving between them filtration slits that are bridged by an extracellular structure impermeable to large macromolecules called the slit diaphragm, and provide the last barrier to protein loss in the KIDNEY. Visceral Epithelial Cells, Glomerular,Epithelial Cells, Glomerular Visceral,Glomerular Visceral Epithelial Cells,Podocyte

Related Publications

Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
December 1997, Blood pressure monitoring,
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
January 1996, The New England journal of medicine,
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
March 1997, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
August 1996, American journal of hypertension,
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
June 1975, Circulation research,
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
April 1997, Evidence-based cardiovascular medicine,
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
June 1988, Lancet (London, England),
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
June 2000, Clinical pharmacokinetics,
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
July 2000, Diabetes research and clinical practice,
Norman Sachs, and Nike Claessen, and Jan Aten, and Maaike Kreft, and Gwendoline J D Teske, and Anneke Koeman, and Coert J Zuurbier, and Hans Janssen, and Arnoud Sonnenberg
January 2023, PloS one,
Copied contents to your clipboard!