Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. 1990

J E Hall, and A C Guyton, and H L Mizelle
Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson.

The RAS is part of an extremely powerful feedback system for long-term control of arterial pressure and volume homeostasis as illustrated in Figure 4. Disturbances that tend to lower blood pressure such as heart failure, cirrhosis, and peripheral vasodilation, cause sodium and water retention until blood pressure returns to normal due in large part to the combined actions of ANGII and reduced renal perfusion pressure. In response to disturbances such as high sodium intake, suppression of ANGII greatly amplifies the effectiveness of the basic pressure natriuresis and diuresis mechanism, thereby preventing large increases in body fluid volumes and blood pressure. In circumstances in which the RAS is inappropriately activated, the sodium-water retaining effects of ANGII necessitate increased blood pressure to maintain sodium and water balance via pressure natriuresis. The sodium retaining actions of the RAS are mediated by intrarenal as well as extrarenal mechanisms. The intrarenal actions of ANGII include a direct effect on tubular sodium transport as well as a potent constrictor action on efferent arterioles which increases tubular reabsorption by altering peritubular capillary physical forces. The constrictor action of ANGII on efferent arterioles also plays an important role in stabilizing GFR and therefore in preventing fluctuations in excretion of metabolic waste products that depend upon a high GFR for excretion. ANGII is known to stimulate proximal reabsorption, but the effects on more distal tubular segments have not been completely elucidated. The primary extra-known to stimulate proximal reabsorption, but the effects on more distal tubular segments have not been completely elucidated. The primary extra-renal effect of ANGII which influences sodium excretion is stimulation of aldosterone secretion. Current evidence, however, suggests that the various intrarenal actions of ANGII are quantitatively more important in causing sodium retention than those mediated by changes in aldosterone secretion. However, the combined intrarenal and extrarenal actions of ANGII on sodium reabsorption provide the body with one of its most potent feedback systems for long-term regulation of body fluid volumes and arterial pressure.

UI MeSH Term Description Entries
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

J E Hall, and A C Guyton, and H L Mizelle
January 1985, Drugs,
J E Hall, and A C Guyton, and H L Mizelle
January 1976, Perspectives in nephrology and hypertension,
J E Hall, and A C Guyton, and H L Mizelle
March 2013, Hypertension (Dallas, Tex. : 1979),
J E Hall, and A C Guyton, and H L Mizelle
April 2011, PloS one,
J E Hall, and A C Guyton, and H L Mizelle
January 1972, Journal d'urologie et de nephrologie,
J E Hall, and A C Guyton, and H L Mizelle
March 1996, Journal of the autonomic nervous system,
J E Hall, and A C Guyton, and H L Mizelle
January 1967, Polskie Archiwum Medycyny Wewnetrznej,
J E Hall, and A C Guyton, and H L Mizelle
July 1981, Endocrinology,
Copied contents to your clipboard!