Calcium dynamics in the secretory granules of neuroendocrine cells. 2012

Javier Alvarez
Instituto de Biología y Genética Molecular (IBGM), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain. jalvarez@ibgm.uva.es

Cellular Ca(2+)signaling results from a complex interplay among a variety of Ca(2+) fluxes going across the plasma membrane and across the membranes of several organelles, together with the buffering effect of large numbers of Ca(2+)-binding sites distributed along the cell architecture. Endoplasmic and sarcoplasmic reticulum, mitochondria and even nucleus have all been involved in cellular Ca(2+) signaling, and the mechanisms for Ca(2+) uptake and release from these organelles are well known. In neuroendocrine cells, the secretory granules also constitute a very important Ca(2+)-storing organelle, and the possible role of the stored Ca(2+) as a trigger for secretion has attracted considerable attention. However, this possibility is frequently overlooked, and the main reason for that is that there is still considerable uncertainty on the main questions related with granular Ca(2+) dynamics, e.g., the free granular [Ca(2+)], the physical state of the stored Ca(2+) or the mechanisms for Ca(2+) accumulation and release from the granules. This review will give a critical overview of the present state of knowledge and the main conflicting points on secretory granule Ca(2+) homeostasis in neuroendocrine cells.

UI MeSH Term Description Entries
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012634 Bodily Secretions Endogenous substances produced through the activity of intact cells of glands, tissues, or organs. Secretions,Bodily Secretion,Secretion,Secretion, Bodily,Secretions, Bodily
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D055099 Neuroendocrine Cells Specialized NEURONS that produce hormones, such as NEUROPEPTIDES or BIOGENIC AMINES. They generally are in the NERVOUS SYSTEM, such as HYPOTHALAMUS, but can be found in other organs or systems. These neurons contain dense neurosecretory granules and PROPROTEIN CONVERTASES allowing the rapidly release of NEUROHORMONES into the blood circulation upon stimulation. Endocrine Neurons,Cell, Neuroendocrine,Cells, Neuroendocrine,Endocrine Neuron,Neuroendocrine Cell,Neuron, Endocrine,Neurons, Endocrine
D020013 Calcium Signaling Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins. Calcium Oscillations,Calcium Waves,Calcium Puffs,Calcium Sparks,Calcium Spikes,Calcium Oscillation,Calcium Puff,Calcium Signalings,Calcium Spark,Calcium Spike,Calcium Wave,Oscillation, Calcium,Oscillations, Calcium,Puff, Calcium,Puffs, Calcium,Signaling, Calcium,Signalings, Calcium,Spark, Calcium,Sparks, Calcium,Spike, Calcium,Spikes, Calcium,Wave, Calcium,Waves, Calcium
D022142 Secretory Vesicles Vesicles derived from the GOLGI APPARATUS containing material to be released at the cell surface. SLMVs,Secretory Granules,Synaptic Like Microvesicles,Synaptic-Like Microvesicles,Zymogen Granules,Condensing Vacuoles,Condensing Vacuole,Granule, Secretory,Granule, Zymogen,Microvesicle, Synaptic-Like,Secretory Granule,Secretory Vesicle,Synaptic Like Microvesicle,Synaptic-Like Microvesicle,Vacuole, Condensing,Vesicle, Secretory,Zymogen Granule

Related Publications

Javier Alvarez
January 1993, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Javier Alvarez
February 2009, Journal of molecular neuroscience : MN,
Javier Alvarez
March 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Javier Alvarez
December 1991, Journal of dental research,
Copied contents to your clipboard!