Effective antitumor immunity against murine gliomas using dendritic cells transduced with hTERTC27 recombinant adenovirus. 2012

Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China.

hTERTC27, a 27-kDa hTERT C-terminal polypeptide has been demonstrated to cause hTERT-positive HeLa cell apoptosis and inhibits the growth of mouse melanoma. hTERTC27 has been associated with telomere dysfunction, regulation of gene-regulated apoptosis, the cell cycle and activation of natural killer (NK) cells, but its mechanism of action is not fully understood. Here, we report that dendritic cells (DCs) transduced with hTERTC27 can increase T-cell proliferation, and augment the concentration of interleukin-2 (IL-2) and interferon-γ (IFN-γ) in the supernatants of T cells. It can also induce antigen-specific cytotoxic T lymphocytes (CTL) against glioma cells in vitro. Moreover, hTERTC27 gene-transduced DCs exhibit a very potent cytotoxicity to glioma cells in vivo. It could prolong the survival time and inhibit the growth of glioma-bearing mice. These data suggest that hTERTC27 gene-transduced DCs can efficiently enhance immunity against gliomas in vitro and in vivo.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D005260 Female Females
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell

Related Publications

Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
October 1997, Gene therapy,
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
July 1999, Journal of immunology (Baltimore, Md. : 1950),
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
January 2008, World journal of gastroenterology,
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
January 2015, Cellular immunology,
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
April 2009, The Journal of pathology,
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
November 2007, Oncology reports,
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
September 2015, Cellular immunology,
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
July 1997, Cancer research,
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
February 2021, Journal of inflammation (London, England),
Han-Xian Gong, and Lei He, and Xiang-Pen Li, and Yi-Dong Wang, and Yi Li, and Jun-Jian Huang, and Ziling Wang, and Dan Xie, and Hsiang-Fu Kung, and Ying Peng
February 2009, Cancer research,
Copied contents to your clipboard!