Cytochrome P450 lanosterol 14α-demethylase (CYP51): insights from molecular genetic analysis of the ERG11 gene in Saccharomyces cerevisiae. 1992

J C Loper
Department of Molecular Genetics University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA.

Eukaryotes characteristically express a cytochrome P450-catalyzed sterol 14α-methyl demethylase as an essential step in the production of membrane sterols. Lanosterol 14α-demethylase of Saccharomyces cerevisiae is the best characterized representative of these enzymes among fungi and provides a model system for the molecular genetic analysis of the reaction. The gene for this P450 and the gene for the S. cerevisiae NADPH-cytochrome P450 reductase have been examined by mutational inactivation and for their regulation of expression. Our results have contributed to a better understanding of sterol biosynthesis in relation to mechanisms of resistance to fungicidal demethylase inhibitors, and promote the rationale for using S. cerevisiae in the further characterization of structure function relationships among sterol 14α-demethylases.

UI MeSH Term Description Entries
D007810 Lanosterol A triterpene that derives from the chair-boat-chair-boat folding of 2,3-oxidosqualene. It is metabolized to CHOLESTEROL and CUCURBITACINS. Kryptosterol,4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D058886 Sterol 14-Demethylase An NADPH-dependent P450 enzyme that plays an essential role in the sterol biosynthetic pathway by catalyzing the demethylation of 14-methyl sterols such as lanosterol. The enzyme acts via the repeated hydroxylation of the 14-methyl group, resulting in its stepwise conversion into an alcohol, an aldehyde and then a carboxylate, which is removed as formic acid. Sterol 14-demethylase is an unusual cytochrome P450 enzyme in that it is found in a broad variety of organisms including ANIMALS; PLANTS; FUNGI; and protozoa. Sterol 14-Demethylases,CYP51 Cytochrome P-450,Cytochrome P-450 CYP51,Eburicol 14 alpha-Demethylase,Eburicol 14alpha-Demethylase,Lanosterol 14 alpha-Demethylase,Obtusifoliol 14alpha-Demethylase,Sterol 14-alpha-Demethylase,14 alpha-Demethylase, Eburicol,14 alpha-Demethylase, Lanosterol,14-Demethylase, Sterol,14-Demethylases, Sterol,14-alpha-Demethylase, Sterol,14alpha-Demethylase, Eburicol,14alpha-Demethylase, Obtusifoliol,CYP51 Cytochrome P 450,CYP51, Cytochrome P-450,Cytochrome P 450 CYP51,Cytochrome P-450, CYP51,Eburicol 14 alpha Demethylase,Eburicol 14alpha Demethylase,Lanosterol 14 alpha Demethylase,Obtusifoliol 14alpha Demethylase,P-450 CYP51, Cytochrome,P-450, CYP51 Cytochrome,Sterol 14 Demethylase,Sterol 14 Demethylases,Sterol 14 alpha Demethylase
D058888 14-alpha Demethylase Inhibitors Compounds that specifically inhibit STEROL 14-DEMETHYLASE. A variety of azole-derived ANTIFUNGAL AGENTS act through this mechanism. 14alpha-Demethylase Inhibitors,CYP51 Inhibitors,Lanosterol 14 alpha-Demethylase Inhibitors,14 alpha Demethylase Inhibitors,14alpha Demethylase Inhibitors,Inhibitors, 14-alpha Demethylase,Inhibitors, 14alpha-Demethylase,Inhibitors, CYP51,Lanosterol 14 alpha Demethylase Inhibitors

Related Publications

Copied contents to your clipboard!