The cytochrome P-450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling. 1990

P S Stayton, and S G Sligar
Department of Biochemistry, University of Illinois, Urbana 61801.

Cytochrome P-450cam cationic surface charges at Lys 344, Arg 72, and Lys 392 have been altered by site-directed mutagenesis techniques. The residues at Lys 344 and Arg 72 were previously suggested as salt bridge contacts in the cytochrome b5-cytochrome P-450cam association complex and implicated in the physiological putidaredoxin-cytochrome P-450cam complex [Stayton, P. S., Poulos, T. L., & Sligar, S. G. (1989) Biochemistry 28, 8201-8205]. Mutations to neutralize the basic charge at Arg 72 (R72Q) and to both neutralize and reverse the charge at Lys 344 (K344Q, K344E) resulted in alteration of NADH oxidation rates in the reconstituted physiological electron-transfer system, which is rate limited by putidaredoxin-cytochrome P-450cam electron transfer. The steady-state Vmax values were apparently unperturbed, suggesting that the observed rate differences were largely attributable to Km effects. The Km values observed for the K344Q (24 microM) and K344E (32 microM) mutants are in the direction expected for neutralization and reversal of a salt bridge charge interaction. A control mutation at a basic surface charge located away from the proposed site of interaction, Lys 392 (K392Q), resulted in overall activities quantitated by NADH oxidation rates that are similar to that of wild-type cytochrome P-450cam. Calculation of the cytochrome P-450cam electrostatic field revealed a patch of positive potential at the modeled cytochrome b5 interaction site lying directly above the nearest proximal approach to the buried heme prosthetic group. These results provide experimental and theoretical evidence for the modeled cytochrome P-450cam binding site implicated in both cytochrome b5 and putidaredoxin association.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D005288 Ferredoxins Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Ferredoxin,Ferredoxin I,Ferredoxin II,Ferredoxin III
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

P S Stayton, and S G Sligar
December 1988, The Journal of biological chemistry,
P S Stayton, and S G Sligar
December 1994, Biochemistry,
P S Stayton, and S G Sligar
November 1995, Biochemistry,
P S Stayton, and S G Sligar
January 2007, Current drug metabolism,
Copied contents to your clipboard!