Multiple sclerosis - remyelination failure as a cause of disease progression. 2012

Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
Institute of Neuropathology, University Hospital Münster, Münster, Germany.

Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system (CNS) that affects worldwide about 2.5 million people. The morphological correlates of the disease are multiple lesions in brain and spinal cord which are characterized by demyelination, inflammation, gliosis and axonal damage. The underlying cause for the permanent neurological deficits in MS patients is axonal loss. Demyelinated axons are prone to damage due to the lack of trophic support by myelin sheaths and oligodendrocytes, as well as the increased vulnerability to immune mediated attacks. Remyelination occurs, but especially in chronic lesions is frequently limited to a small rim at the lesion border. Current treatment strategies are based on anti-inflammatory or immunomodulatory drugs and have the potential to reduce the numbers of newly evolving lesions, although as yet no treatment strategy exists to influence or prevent the progressive disease phase. Therefore, the development of neuroprotective treatment options, such as the promotion of endogenous remyelination is an attractive strategy. A prerequisite for the development of such new treatments is the understanding of the mechanisms leading to remyelination and the reasons for insufficient endogenous repair in chronic MS. This review will therefore provide an overview of the current concepts regarding remyelination in the rodent and human CNS. We will also summarize a selected number of inhibitory pathways and non-disease related factors which may contribute to remyelination failure in chronic MS.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D009103 Multiple Sclerosis An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903) MS (Multiple Sclerosis),Multiple Sclerosis, Acute Fulminating,Sclerosis, Disseminated,Disseminated Sclerosis,Sclerosis, Multiple
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012307 Risk Factors An aspect of personal behavior or lifestyle, environmental exposure, inborn or inherited characteristic, which, based on epidemiological evidence, is known to be associated with a health-related condition considered important to prevent. Health Correlates,Risk Factor Scores,Risk Scores,Social Risk Factors,Population at Risk,Populations at Risk,Correlates, Health,Factor, Risk,Factor, Social Risk,Factors, Social Risk,Risk Factor,Risk Factor Score,Risk Factor, Social,Risk Factors, Social,Risk Score,Score, Risk,Score, Risk Factor,Social Risk Factor

Related Publications

Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
July 2008, Brain : a journal of neurology,
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
May 2023, Nature reviews. Neurology,
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
January 2023, Brain : a journal of neurology,
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
August 2019, Cells,
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
April 2017, Medicina clinica,
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
December 2019, ACS pharmacology & translational science,
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
April 1997, Multiple sclerosis (Houndmills, Basingstoke, England),
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
February 2003, Journal of the neurological sciences,
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
January 2009, Progress in brain research,
Karin Hagemeier, and Wolfgang Brück, and Tanja Kuhlmann
January 1979, Annals of neurology,
Copied contents to your clipboard!