Identification of a nuclear carbonic anhydrase in Caenorhabditis elegans. 2012

Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.

BACKGROUND Carbonic anhydrases (CA) catalyze the inter-conversion of CO(2) with HCO(3) and H(+), and are involved in a wide variety of physiologic processes such as anion transport, pH regulation, and water balance. In mammals there are sixteen members of the classical α-type CA family, while the simple genetic model organism Caenorhabditis elegans codes for six αCA isoforms (cah-1 through cah-6). METHODS Fluorescent reporter constructs were used to analyze gene promoter usage, splice variation, and protein localization in transgenic worms. Catalytic activity of recombinant CA proteins was assessed using Hansson's histochemistry. CA's ability to regulate pH as a function of CO(2) and HCO(3) was measured using dynamic fluorescent imaging of genetically-targeted biosensors. RESULTS Each of the six CA genes was found to be expressed in a distinct repertoire of cell types. Surprisingly, worms also expressed a catalytically-active CA splice variant, cah-4a, in which an alternative first exon targeted the protein to the nucleus. Cah-4a expression was restricted mainly to the nervous system, where it was found in nearly all neurons, and recombinant CAH-4A protein could regulate pH in the nucleus. CONCLUSIONS In addition to establishing C. elegans as a platform for studying αCA function, this is the first example of a nuclear-targeted αCA in any organism to date. CONCLUSIONS A classical αCA isoform is targeted exclusively to the nucleus where its activity may impact nuclear physiologic and pathophysiologic responses.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002256 Carbonic Anhydrases A family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. They play an important role in the transport of CARBON DIOXIDE from the tissues to the LUNG. EC 4.2.1.1. Carbonate Dehydratase,Carbonic Anhydrase,Anhydrases, Carbonic,Dehydratase, Carbonate
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic

Related Publications

Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
October 2008, Molecular and biochemical parasitology,
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
May 1994, Plant physiology,
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
April 2009, Bioorganic & medicinal chemistry,
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
June 2021, PLoS genetics,
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
May 2004, Plant physiology,
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
January 2016, Methods in molecular biology (Clifton, N.J.),
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
February 2002, Neuroscience letters,
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
May 2008, The Journal of biological chemistry,
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
November 1978, Biochimica et biophysica acta,
Teresa A Sherman, and Sharath C Rongali, and Tori A Matthews, and Jason Pfeiffer, and Keith Nehrke
October 1984, Plant physiology,
Copied contents to your clipboard!