Identification and characterization of psychrotolerant sporeformers associated with fluid milk production and processing. 2012

Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
Department of Food Science, Cornell University, Ithaca, New York, USA.

Psychrotolerant spore-forming bacteria represent a major challenge to the goal of extending the shelf life of pasteurized dairy products. The objective of this study was to identify prominent phylogenetic groups of dairy-associated aerobic sporeformers and to characterize representative isolates for phenotypes relevant to growth in milk. Analysis of sequence data for a 632-nucleotide fragment of rpoB showed that 1,288 dairy-associated isolates (obtained from raw and pasteurized milk and from dairy farm environments) clustered into two major divisions representing (i) the genus Paenibacillus (737 isolates, including the species Paenibacillus odorifer, Paenibacillus graminis, and Paenibacillus amylolyticus sensu lato) and (ii) Bacillus (n = 467) (e.g., Bacillus licheniformis sensu lato, Bacillus pumilus, Bacillus weihenstephanensis) and genera formerly classified as Bacillus (n = 84) (e.g., Viridibacillus spp.). When isolates representing the most common rpoB allelic types (ATs) were tested for growth in skim milk broth at 6°C, 6/9 Paenibacillus isolates, but only 2/8 isolates representing Bacillus subtypes, grew >5 log CFU/ml over 21 days. In addition, 38/40 Paenibacillus isolates but only 3/47 Bacillus isolates tested were positive for β-galactosidase activity (including some isolates representing Bacillus licheniformis sensu lato, a common dairy-associated clade). Our study confirms that Paenibacillus spp. are the predominant psychrotolerant sporeformers in fluid milk and provides 16S rRNA gene and rpoB subtype data and phenotypic characteristics facilitating the identification of aerobic spore-forming spoilage organisms of concern. These data will be critical for the development of detection methods and control strategies that will reduce the introduction of psychrotolerant sporeformers and extend the shelf life of dairy products.

UI MeSH Term Description Entries
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005511 Food Handling Any aspect of the operations in the preparation, processing, transport, storage, packaging, wrapping, exposure for sale, service, or delivery of food. Food Processing,Handling, Food,Processing, Food
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001407 Bacillus A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic. Bacillus bacterium
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed

Related Publications

Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
July 2014, Journal of dairy science,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
January 2016, Journal of dairy science,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
December 2023, Journal of dairy science,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
October 2007, Journal of food protection,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
October 2018, Journal of dairy science,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
May 2013, Foodborne pathogens and disease,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
January 2024, Journal of dairy science,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
March 2015, International journal of food microbiology,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
June 1999, Journal of food protection,
Reid A Ivy, and Matthew L Ranieri, and Nicole H Martin, and Henk C den Bakker, and Bruno M Xavier, and Martin Wiedmann, and Kathryn J Boor
November 2015, Wei sheng wu xue bao = Acta microbiologica Sinica,
Copied contents to your clipboard!