P2Y receptors regulate proliferation of human pancreatic duct epithelial cells. 2012

Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
Departments of Physiology, School of Medicine, CHA University, Seongnam, Gyeonggi, Republic of Korea.

OBJECTIVE The aim of this study was to investigate the effect of P2Y receptor activation on proliferation of human pancreatic duct epithelial cells. METHODS Proliferation was measured by immunoassay for bromodeoxyuridine incorporation into a pancreatic duct epithelial cell line, PANC-1. Expression of P2Y receptors was examined using quantitative reverse transcription-polymerase chain reaction and Western blot. RESULTS Extracellular nucleotides, adenosine diphosphate (ADP) and uridine diphosphate (UDP), stimulated proliferation of pancreatic duct cells in a concentration-dependent manner. The nucleotide efficacy order was ADP > UDP > uridine triphosphate (UTP) > adenosine triphosphate. P2Y(1) and P2Y(6) receptor blockers, MRS2500 and MRS2578, blocked the effect of ADP and UDP. The signal that transmitted the proliferative activity of ADP and UDP was transducted to phospholipase C, inositol 1,4,5-triphosphate receptor, and protein kinase C. These results indicate involvement of P2Y(1) and P2Y(6) receptors in ADP- and UDP-stimulated proliferation. Pancreatic duct cells expressed the messenger RNA transcripts of P2Y receptors, P2Y(1) , P2Y(2), and P2Y(6), and P2Y(1) and P2Y(6) receptor protein. CONCLUSIONS Extracellular nucleotides increase proliferation of human pancreatic duct epithelial cells by activation of P2Y(1) and P2Y(6) receptors. This provides the basic model for the effect of P2Y receptors on the proliferation of pancreatic duct epithelial cells.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D010183 Pancreatic Ducts Ducts that collect PANCREATIC JUICE from the PANCREAS and supply it to the DUODENUM. Duct of Santorini,Duct of Wirsung,Duodenal Papilla, Minor,Wirsung's Duct,Accessory Pancreatic Duct,Accessory Pancreatic Duct of Santorini,Main Pancreatic Duct,Santorini's Duct,Accessory Pancreatic Ducts,Duct, Accessory Pancreatic,Duct, Main Pancreatic,Duct, Pancreatic,Duct, Santorini's,Duct, Wirsung's,Ducts, Pancreatic,Main Pancreatic Ducts,Minor Duodenal Papilla,Minor Duodenal Papillas,Pancreatic Duct,Pancreatic Duct, Accessory,Pancreatic Duct, Main,Pancreatic Ducts, Accessory,Papilla, Minor Duodenal,Santorini Duct,Wirsung Duct,Wirsungs Duct
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011760 Pyrrolidinones A group of compounds that are derivatives of oxo-pyrrolidines. A member of this group is 2-oxo pyrrolidine, which is an intermediate in the manufacture of polyvinylpyrrolidone. (From Merck Index, 11th ed) Pyrrolidinone,Pyrrolidone,Pyrrolidones
D001896 Boron Compounds Inorganic or organic compounds that contain boron as an integral part of the molecule. Borides,Compounds, Boron
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004963 Estrenes Unsaturated derivatives of the ESTRANES with methyl groups at carbon-13, with no carbon at carbon-10, and with no more than one carbon at carbon-17. They must contain one or more double bonds. 19-Norandrostenes,19 Norandrostenes

Related Publications

Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
August 2003, American journal of physiology. Lung cellular and molecular physiology,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
June 2005, Cancer letters,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
March 1998, In vitro cellular & developmental biology. Animal,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
May 2001, American journal of physiology. Gastrointestinal and liver physiology,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
January 2008, Investigative ophthalmology & visual science,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
October 2013, Tissue barriers,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
May 2013, Pancreas,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
March 2004, American journal of physiology. Cell physiology,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
August 1999, The American journal of physiology,
Taei Ko, and Hee Jung An, and Young Geon Ji, and Ok Jun Kim, and Dong Hyeon Lee
August 2000, Gut,
Copied contents to your clipboard!