Interaction between satellite cells and skeletal muscle fibers. 1990

R Bischoff
Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110.

Single myofibers with attached satellite cells isolated from adult rats were used to study the influence of the mature myofiber on the proliferation of satellite cells. The satellite cells remain quiescent when cultured in serum containing medium but proliferate when exposed to mitogen from an extract of crushed adult muscle. The response of satellite cells to mitogen was measured under three situations with respect to cell contact: (1) in contact with a viable myofiber and its basal lamina, (2) detached from the myofiber by centrifugal force and deposited on the substratum and (3) beneath the basal lamina of a Marcaine killed myofiber. The results show that satellite cells in contact with the plasmalemma of a viable myofiber have reduced mitogenic response. Since inhibiting growth may induce differentiation, I tested whether satellite cells proliferating on the surface of a myofiber would fuse. Although the satellite cell progeny were fusion competent, they did not fuse with the myofiber. To determine whether fusion competence of the myofiber changes with time in culture, embryonic myoblasts were challenged to fuse with myofibers that had been stripped of satellite cells and cultured for several days. The myoblasts fused with pseudopodial sprouts growing from the ends of the myofiber, but did not fuse with the original myofiber surface. These results indicate that contact with the surface of a mature myofiber suppresses proliferation of myogenic cells but the cells do not fuse with the myofiber.

UI MeSH Term Description Entries
D008297 Male Males
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Bischoff
February 1961, The Journal of biophysical and biochemical cytology,
R Bischoff
August 1963, Virchows Archiv fur pathologische Anatomie und Physiologie und fur klinische Medizin,
R Bischoff
January 1994, Reviews of physiology, biochemistry and pharmacology,
R Bischoff
July 2015, Comprehensive Physiology,
R Bischoff
December 2007, Current opinion in cell biology,
R Bischoff
January 1979, Biofizika,
R Bischoff
December 1969, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!