P2 purinoceptor-mediated inositol phosphate formation in relation to cytoplasmic calcium in DDT1 MF-2 smooth muscle cells. 1990

B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
Department of Pharmacology/Clinical Pharmacology, University of Groningen, The Netherlands.

The effect of P2 purinoceptor stimulation on inositol phosphate (InsP) formation in relation to the intracellular Ca2+ concentration was measured in vas deferens DDT1 MF-2 smooth muscle cells. The different [3H]myo-inositol-labelled InsP fractions were analyzed by high performance liquid chromatography and intracellular Ca2+ was determined by measuring fluorescence using Indo-1 as indicator. Stimulation with ATP (10(-4) M) resulted in an enhanced formation of inositol mono-, bis-, tris- and tetrakisphosphate (InsP1, InsP2, InsP3 and InsP4), but no changes occurred in the formation of inositol pentakis- and hexakisphosphate (InsP5 and InsP6). The putative second messenger Ins(1,3,4,5)P4 rapidly increased after addition of the agonist, reaching a maximum after about 2 min. The isomer Ins(1,4,5)P3 showed a delayed rise starting after about 2 min. The formation of Ins(1,3,4,5)P4 in the presence of ATP (2 min) was concentration-dependent, reaching a half maximal value at about 50 microM of the agonist. The intracellular Ca2+ concentration showed an initial increase after P2 purinoceptor stimulation, reaching a plateau after 2 min. Both the top of the initial phase and the plateau value of the response reached a half maximal value at an ATP concentration of about 7 microM. This Ca2+ response could be evoked repeatedly by ATP and was not affected by diltiazem (10(-5) M). In the absence of external Ca2+, the internal Ca2+ concentration increased transiently in the presence of ATP without showing the plateau phase. This response could be evoked only once under Ca2(+)-free conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
October 1989, European journal of pharmacology,
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
August 1994, European journal of pharmacology,
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
August 1996, British journal of pharmacology,
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
November 1992, The American journal of physiology,
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
January 1991, Pflugers Archiv : European journal of physiology,
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
November 1990, Molecular pharmacology,
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
December 1996, European journal of pharmacology,
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
January 1999, Hypertension (Dallas, Tex. : 1979),
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
September 1992, European journal of pharmacology,
B Hoiting, and A Molleman, and M Duin, and A den Hertog, and A Nelemans
September 1985, Molecular and cellular biochemistry,
Copied contents to your clipboard!