Modulation of etoposide (VP-16) cytotoxicity by verapamil or cyclosporine in multidrug-resistant human leukemic cell lines and normal bone marrow. 1990

N J Chao, and M Aihara, and K G Blume, and B I Sikic
Bone Marrow Transplantation Program, Hematology Division, Stanford University School of Medicine, CA.

We studied the effects of two modulators of multidrug resistance (MDR), cyclosporine and verapamil, on the cytotoxicity of etoposide (VP-16) in normal human bone marrow; two human leukemia cell lines, K562 and CEM; their MDR variants, K562/DOX and CEM/VLB; and mixtures of normal marrow and leukemic cells. VP-16 was selectivity toxic to the parental leukemic cells, with IC-50 values of 2 microM for CEM cells, 1.5 microM for K562 cells, and 12 microM for normal marrow CFU-GM. This selectivity was lost in the MDR variant leukemia cells, with IC-50s of 20 microM in K562/DOX and 8 microMs in CEM/VLB. Cyclosporine, 6 microMs, and verapamil, 20 microM, alone were nontoxic to bone marrow CFU-GM, and did not significantly increase the toxicity of VP-16 to normal marrow cells or to the two drug-sensitive leukemic cell lines. However, cyclosporine specifically enhanced the cytotoxicity of VP-16 in the MDR leukemia cells, reducing the IC-50 to the same level as the parental sensitive cells. Verapamil was considerably less effective. In a mixing experiment that included K562/DOX cells and normal bone marrow, cyclosporine increased the toxicity of VP-16 to the resistant leukemic cells by nearly 20-fold. Because the cytotoxic effect of cyclosporine is additive for resistant tumor cells, its combination with VP-16 may be useful in the purging of contaminating tumor cells prior to autologous bone marrow transplantation.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003524 Cyclosporins A group of closely related cyclic undecapeptides from the fungi Trichoderma polysporum and Cylindocarpon lucidum. They have some antineoplastic and antifungal action and significant immunosuppressive effects. Cyclosporins have been proposed as adjuvants in tissue and organ transplantation to suppress graft rejection. Cyclosporines
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000971 Antineoplastic Combined Chemotherapy Protocols The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form. Anticancer Drug Combinations,Antineoplastic Agents, Combined,Antineoplastic Chemotherapy Protocols,Antineoplastic Drug Combinations,Cancer Chemotherapy Protocols,Chemotherapy Protocols, Antineoplastic,Drug Combinations, Antineoplastic,Antineoplastic Combined Chemotherapy Regimens,Combined Antineoplastic Agents,Agent, Combined Antineoplastic,Agents, Combined Antineoplastic,Anticancer Drug Combination,Antineoplastic Agent, Combined,Antineoplastic Chemotherapy Protocol,Antineoplastic Drug Combination,Cancer Chemotherapy Protocol,Chemotherapy Protocol, Antineoplastic,Chemotherapy Protocol, Cancer,Chemotherapy Protocols, Cancer,Combinations, Antineoplastic Drug,Combined Antineoplastic Agent,Drug Combination, Anticancer,Drug Combination, Antineoplastic,Drug Combinations, Anticancer,Protocol, Antineoplastic Chemotherapy,Protocol, Cancer Chemotherapy,Protocols, Antineoplastic Chemotherapy,Protocols, Cancer Chemotherapy

Related Publications

N J Chao, and M Aihara, and K G Blume, and B I Sikic
March 1994, International journal of cancer,
N J Chao, and M Aihara, and K G Blume, and B I Sikic
January 1992, Progress in clinical and biological research,
N J Chao, and M Aihara, and K G Blume, and B I Sikic
July 2001, Japanese journal of cancer research : Gann,
N J Chao, and M Aihara, and K G Blume, and B I Sikic
August 1998, International journal of cancer,
N J Chao, and M Aihara, and K G Blume, and B I Sikic
November 1989, Cancer research,
N J Chao, and M Aihara, and K G Blume, and B I Sikic
January 1991, Anticancer research,
N J Chao, and M Aihara, and K G Blume, and B I Sikic
October 1987, Blood,
N J Chao, and M Aihara, and K G Blume, and B I Sikic
February 1997, Anti-cancer drugs,
N J Chao, and M Aihara, and K G Blume, and B I Sikic
January 2012, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!