Universal primers for fluorescent labelling of PCR fragments--an efficient and cost-effective approach to genotyping by fluorescence. 2012

M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville, Vic. 3010, Australia. mark.blacket@dpi.vic.gov.au

Directly labelling locus-specific primers for microsatellite analysis is expensive and a common limitation to small-budget molecular ecology projects. More cost-effective end-labelling of PCR products can be achieved through a three primer PCR approach, involving a fluorescently labelled universal primer in combination with modified locus-specific primers with 5' universal primer sequence tails. This technique has been widely used but has been limited largely due to a lack of available universal primers suitable for co-amplifying large numbers of size overlapping loci and without requiring locus-specific PCR conditions to be modified. In this study, we report a suite of four high-performance universal primers that can be employed in a three primer PCR approach for efficient and cost-effective fluorescent end-labelling of PCR fragments. Amplification efficiency is maximized owing to high universal primer Tm values (approximately 60+ °C) that enhance primer versatility and enable higher annealing temperatures to be employed compared with commonly used universal primers such as M13. We demonstrate that these universal primers can be combined with multiple fluorophores to co-amplify multiple loci efficiently via multiplex PCR. This method provides a level of multiplexing and PCR efficiency similar to microsatellite fluorescent detection assays using directly labelled primers while dramatically reducing project costs. Primer performance is tested using several alternative PCR strategies that involve both single and multiple fluorophores in single and multiplex PCR across a wide range of taxa.

UI MeSH Term Description Entries
D003365 Costs and Cost Analysis Absolute, comparative, or differential costs pertaining to services, institutions, resources, etc., or the analysis and study of these costs. Affordability,Analysis, Cost,Cost,Cost Analysis,Cost Comparison,Cost Measures,Cost-Minimization Analysis,Costs and Cost Analyses,Costs, Cost Analysis,Pricing,Affordabilities,Analyses, Cost,Analyses, Cost-Minimization,Analysis, Cost-Minimization,Comparison, Cost,Comparisons, Cost,Cost Analyses,Cost Comparisons,Cost Measure,Cost Minimization Analysis,Cost, Cost Analysis,Cost-Minimization Analyses,Costs,Measure, Cost,Measures, Cost
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D058889 Molecular Typing Using MOLECULAR BIOLOGY techniques, such as DNA SEQUENCE ANALYSIS; PULSED-FIELD GEL ELECTROPHORESIS; and DNA FINGERPRINTING, to identify, classify, and compare organisms and their subtypes. Typing, Molecular
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide

Related Publications

M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
January 2014, PloS one,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
January 2017, Journal of clinical microbiology,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
January 2017, Journal of clinical microbiology,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
June 2019, Electrophoresis,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
January 2001, Genome research,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
August 1997, Biotechnology and applied biochemistry,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
January 1997, BioTechniques,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
January 2009, Bing du xue bao = Chinese journal of virology,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
January 2024, HLA,
M J Blacket, and C Robin, and R T Good, and S F Lee, and A D Miller
June 2016, Human gene therapy,
Copied contents to your clipboard!