The domain organization of the plant thylakoid membrane. 1990

P A Albertsson, and E Andreasson, and P Svensson
Department of Biochemistry, University of Lund, Sweden.

A model of the photosynthetic membrane from higher plants is presented. The different photosystems, PSI alpha, PSI beta, PSII alpha and PSII beta, are located in separate domains. The photosystems with the largest antenna systems, the alpha systems, are in the grana and the other in the stroma lamellae. In each grana disc PSI alpha is located in a flat annulus surrounding a circular PSII alpha domain. In this the PSII alpha units with the largest antennae are found in the center. The model is consistent with results from recent membrane fractionation experiments.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D045322 Photosynthetic Reaction Center Complex Proteins Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II. Photosynthetic Complex,Photosynthetic Reaction Center,Photosynthetic Reaction Center Complex Protein,Photosynthetic Complexes,Photosynthetic Reaction Centers,Center, Photosynthetic Reaction,Complex, Photosynthetic,Complexes, Photosynthetic,Reaction Center, Photosynthetic,Reaction Centers, Photosynthetic
D045342 Light-Harvesting Protein Complexes Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX. Antenna Complexes, Light-Harvesting,Light-Harvesting Antenna Complexes,Light-Harvesting Chlorophyll Protein,Light-Harvesting Chlorophyll Protein Complexes,Antenna Complexes, Light Harvesting,Chlorophyll Protein, Light-Harvesting,Complexes, Light-Harvesting Antenna,Complexes, Light-Harvesting Protein,Light Harvesting Antenna Complexes,Light Harvesting Chlorophyll Protein,Light Harvesting Chlorophyll Protein Complexes,Light Harvesting Protein Complexes,Protein Complexes, Light-Harvesting

Related Publications

P A Albertsson, and E Andreasson, and P Svensson
May 2020, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
P A Albertsson, and E Andreasson, and P Svensson
September 2005, Plant & cell physiology,
P A Albertsson, and E Andreasson, and P Svensson
January 2005, Biochimica et biophysica acta,
P A Albertsson, and E Andreasson, and P Svensson
November 1985, Biochimica et biophysica acta,
P A Albertsson, and E Andreasson, and P Svensson
February 1986, Biochemical Society transactions,
P A Albertsson, and E Andreasson, and P Svensson
August 1991, Journal of electron microscopy technique,
P A Albertsson, and E Andreasson, and P Svensson
June 2020, Biophysical journal,
P A Albertsson, and E Andreasson, and P Svensson
December 1987, Journal of bioenergetics and biomembranes,
P A Albertsson, and E Andreasson, and P Svensson
January 1999, Trends in biochemical sciences,
P A Albertsson, and E Andreasson, and P Svensson
August 2005, The FEBS journal,
Copied contents to your clipboard!