The cortical cytoskeleton and its role in sperm penetration of the mammalian egg. 1990

S D Webster, and R W McGaughey
Department of Zoology, Arizona State University, Tempe 85287-1501.

In this study isolated cortical regions of both penetrated and nonpenetrated Syrian hamster eggs were examined in whole mounts and platinum replicas of detergent-extracted cortical patches. Two types of cytoskeletal organization were observed in the egg cortex: Loose networks (LN regions) with integrated localized dense networks (LDN regions). Decoration with heavy meromyosin and labeling with antiactin/protein G gold both indicate that the cortical cytoskeleton consists mainly of a LN of actin microfilaments and several types of nonactin filaments, whereas LDN regions dispersed within the LN were comprised of nonactin filaments. Cortical patches and replicas of eggs incubated with sperm for 10-15 min provide evidence that cortical microfilaments may be intimately associated with penetrating spermatozoa. The results of this investigation provide the first high resolution view of the cortical cytoskeletal domain of a mammalian egg and suggest that actin microfilaments might play a role in sperm penetration of the egg cortex.

UI MeSH Term Description Entries
D008297 Male Males
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013084 Sperm-Ovum Interactions Interactive processes between the oocyte (OVUM) and the sperm (SPERMATOZOA) including sperm adhesion, ACROSOME REACTION, sperm penetration of the ZONA PELLUCIDA, and events leading to FERTILIZATION. Ovum-Sperm Interactions,Sperm Penetration,Egg-Sperm Interactions,Gamete Interactions,Oocyte-Sperm Interactions,Sperm-Egg Interactions,Sperm-Egg Penetration,Sperm-Oocyte Interactions,Sperm-Oocyte Penetration,Sperm-Ovum Penetration,Sperm-Zona Pellucida Penetration,Egg Sperm Interactions,Egg-Sperm Interaction,Gamete Interaction,Oocyte Sperm Interactions,Oocyte-Sperm Interaction,Ovum Sperm Interactions,Ovum-Sperm Interaction,Sperm Egg Interactions,Sperm Egg Penetration,Sperm Oocyte Interactions,Sperm Oocyte Penetration,Sperm Ovum Interactions,Sperm Ovum Penetration,Sperm Penetrations,Sperm Zona Pellucida Penetration,Sperm-Egg Interaction,Sperm-Egg Penetrations,Sperm-Oocyte Interaction,Sperm-Oocyte Penetrations,Sperm-Ovum Interaction,Sperm-Ovum Penetrations,Sperm-Zona Pellucida Penetrations
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

S D Webster, and R W McGaughey
June 2002, Science (New York, N.Y.),
S D Webster, and R W McGaughey
November 1951, Australian journal of scientific research. Ser. B: Biological sciences,
S D Webster, and R W McGaughey
May 1992, The American journal of physiology,
S D Webster, and R W McGaughey
January 2016, Advances in anatomy, embryology, and cell biology,
S D Webster, and R W McGaughey
March 2005, Reproduction (Cambridge, England),
S D Webster, and R W McGaughey
August 2014, Biochemical and biophysical research communications,
S D Webster, and R W McGaughey
July 2004, Animal reproduction science,
S D Webster, and R W McGaughey
July 1976, The Journal of experimental zoology,
Copied contents to your clipboard!